
USER

MANUAL
A step-by-step user guide to getting started on learning Python
Programming Language through Block Coding. Learn syntax, build
projects and solve problems using Physical Python Block Coding.

CREATED BY

AITinkr Prepared by
Suresh Kadari

Last Updated:
30 January 2025

PYTHON
Block Coding

Copyright CEDURA TESTSOL

To ensure the safe and enjoyable use of this toy, please read and follow these safety instructions
carefully:

AGE RECOMMENDATION:
This kit is suitable for children aged 8 years and older.

SUPERVISION
Not mandatory as this kit has how-to-use instructions and projects. However, in the case of young children, we
recommend supervision to prevent accidental swallowing or misuse of blocks.

STORAGE
Keep the blocks out of the reach of younger siblings or pets. After playtime, store the blocks in a secure
container.

CLEANING
Clean the blocks periodically with a dry cloth. Ensure the blocks are completely dry, and do not use nails or
sharp objects to pick them up. The stickers on the blocks may come off due to usage or handling. In such cases,
please use glue to fix them back.

CHOKING HAZARD
Not suitable for children under 5 years due to small parts that may pose a choking hazard. Small parts can block
airways if swallowed. If a child places a block in their mouth or swallows one, seek medical attention
immediately.

Safety Information

CEDURA © Copyrighted Content. All rights reserved 2

Table of Contents

❑ Kit Contents

❑ Essential Instructions

❑ Overview of the Blocks

❑ How to use the Output Chart

❑ What is Block Coding?

❑ How to Block Code?

❑ Data & Data Types

❑ Explanation of Individual Blocks

❑ Assignment Solutions

CEDURA © Copyrighted Content. All rights reserved

3

Kit Contents

Getting Started:

• Check the QC seal. Do not accept if broken.
• Unpack the contents and identify them.
• Fix 2 No. latches. Remove the screws, insert the latch and re-screw them
• Place the Chart on the board
• Read the instructions properly before using the kit. If in doubt, write to us at

hello@schoolforai.com
• Use blank blocks to create your own coding blocks. Please share your ideas with us

and we may publish them

CEDURA © Copyrighted Content. All rights reserved

4

Magnetic
White Board

Coding Area

Sketch Pen with Eraser
(Magnetic)

Duster (white board)

Various types of
Coding Blocks*

Screwdriver for fixing
latch (not included)

Latch for lock
(with screw) - 2No.

Wooden Box

Black Board
(Behind / Flipside)

Variables logging Area

Sprite

Value Area

Storage Area

Instruction / Coding
Booklet

* Includes Blank Blocks

Output Chart

Chalks for Black Board

mailto:hello@schoolforai.com

Essential Instructions

Dos and Don’ts

• Always read the instructions before using the kit.

• Keep small parts away from toddlers and small children. There is a danger of accidental

swallowing.

• Blocks are designed to be reusable. You can write on the whiteboard, on the blocks, and

on the blackboard.

• Use the duster or an eraser properly without leaving marks on the whiteboard. Do not

use hard sketch pens or ball pens, but light sketch pens only.

• To erase your writing on the sticker properly, use a hand sanitiser or glass cleaner liquid.

Use small quantities only.

• Do not write hard on the white space on the block. It may leave impressions and make

them not reusable. In such a rare case, you could create your own sticker and stick it on

the block.

• Do not clean the board or blocks with hard chemicals or abrasive fluids.

• Do not write hard on the magnetic whiteboard

• Always write small text and values in the white space. Please consider the names of the

variables or values assigned to them or the message in the output block to be a small

one. The goal is to learn the coding within the available space.

• It may be possible that the sticker may come off after long usage. If it happens, you may

stick them back with any standard glue. You could even go creative, and design stickers

as required.

• Use the blank blocks supplied in the kit to create your own block code and showcase

your creativity. Alternatively, you could use them in place of blocks if you lose some.

You could also trace the design on cardboard and prepare blocks on your own.

NOTE:

This is a kit mimicking block coding without an actual computer. Hence, sometimes we need to

assume things like clicking the space bar or seeking input from a user or such. This is a gamified

fun-filled learning experience and also helps you to be creative. We cannot expect the flexibility

and sophistication of online computer-based block coding while using the kit

CEDURA © Copyrighted Content. All rights reserved

5

Overview of the Blocks - Total 129

Conditional Blocks

Event Blocks

Operator Blocks

1 # 5

Start Block Connector End Block (short) End Block (extended)

If Condition Else (short) Else (extended) Elif Condition

Match Case (short) Case (extended)

Pass

Lesser than Lesser than or equal Greater than or equalGreater than

Multiply Divide Mod Floor Division

Equal to

Equals to

Add Subtract Exponentiation

AND OR NOT

IN NOT IN

1 # 1

CEDURA © Copyrighted Content. All rights reserved

Control Loop Blocks

While Control Loop For Control Loop

2

Arithmetic

1 # 1 # 1 # 1 # 1 # 1 # 1

Assignment
6

Comparison

2 # 2 # 2 # 1

1 # 1 # 1
Logical

1 # 1
Membership

Colon End

1# 4# 2 # 2 # 2 # 2

1 # 1 # 3

2 # 2

2

Connector Extended

End Block (long)

1

Not Equal

Break Continue

1 # 1

1

6

Input & Output Blocks

Print Function Input Function

CEDURA © Copyrighted Content. All rights reserved

Value / Variable Blocks

Message / Text Value Variable (long) Variable (short) List - Sequence

Tuple - Sequence Set - Sequence

Blank Spacer

2 # 4
Others

Int Type Conv. Float Type Conv. String Type Conv.

Split Method

Comma Separator

4
** Use these when you find a
 shortfall of operator blocks

Datatype Blocks

Datatype
2

Type Casting

2 # 2 # 2

1

2 # 4 # 4 # 6 # 1

1 # 1

4 # 4

Dictionary - Key:Value Range - Parameters

Range

2 # 1

Seq-Index Seq-Slicing Seq-Slicing with step

1 # 1 # 1

List Tuple

Sequences
1 # 1

1

7

Print (Extended)

2

Blank Blocks

Note: Use these blank blocks to create your logic or even a new block-coding programming language. Why not? All you need is an
idea, creativity and a need that should be fulfilled.

CEDURA © Copyrighted Content. All rights reserved

1

1

1

1

1

1

1

1

8

Sprite Block

Sprite

How to use the Output Chart

While working on Block Coding you are expected to showcase the output to prove the correct

execution of your code. However, it is hard to do so on this physical Block Coding kit. Hence we have

introduced the Output Chart that facilitates Sprite movement and a few other actions to help you

learn the coding concepts. You could move the Sprite on this Output Chart while explaining your

code.

White Space for calculations
and values

Output Chart

Variable
Block

Variable-value pair to
write intermediatory
and final output values

Flag Click

Sprite
Docking Area

Space Click
Output Value Space

Move the Sprite on the chart and imitate the click actions. You could even write the output value in

the value space on the top right-hand side. Read the X and Y axis coordinates to move the Sprite on

the movement area. You could re-print the chart if required by downloading it from our resources. If

you have any queries or need help in this regard please write to us at hello@schoolforai.com.

Value
Block

CEDURA © Copyrighted Content. All rights reserved

9

mailto:hello@schoolforai.com

What is Block Coding?

Block coding is a visual programming method that allows users to create programs by stacking blocks
of code, rather than writing text-based code. Each block represents a specific instruction, making it an
accessible way to learn programming concepts without dealing with syntax complexities.

Block coding serves as a simplified, visual approach to programming, designed to make coding more
accessible, especially for beginners, children, and non-technical users. Its primary purpose is to
introduce fundamental programming concepts in an engaging and error-free manner.

KEY FEATURES:

Visual Interface: Uses drag-and-drop blocks to build code. Blocks are often color-coded and
shaped to indicate compatibility.

Syntax-Free: No need to worry about typos, brackets, or punctuation errors.

Event-Driven: Focuses on actions triggered by events (e.g., clicking a button, moving a sprite).

Immediate Feedback: Offers real-time execution of code, helping users see the results of
their logic instantly.

POPULAR TOOLS:

Scratch: Developed by MIT, Scratch is widely used for teaching kids programming
through animations, games, and stories. One of the most famous visual
programming interfaces.

Blockly: A Google-developed library for creating visual programming interfaces.
Widely used to create programs, learn coding and solve problems.

Code.org: Offers block-based coding activities for different levels along with
problem-solving.

Block coding is an excellent way for kids to develop essential skills and prepare for a technology-driven
future. Its visual, beginner-friendly approach makes it accessible and fun, enabling children to grasp
complex concepts in a simplified manner. Block coding helps in developing computational thinking,
problem-solving skills, logical reasoning, algorithm design, creativity and innovation, and boosts
confidence.

CEDURA © Copyrighted Content. All rights reserved

10

Why Learn PYTHON

Python is an excellent programming language for kids to learn because of its simplicity and versatility.
Its easy-to-read syntax resembles everyday language, making it an ideal choice for beginners. Unlike
other languages that require complex setups, Python allows kids to focus on understanding
programming concepts without getting bogged down by syntax errors. This makes the learning
process smoother and more enjoyable. Python also encourages creativity, as kids can quickly build
games, animations, and even simple applications, turning their ideas into reality.

Beyond its simplicity, Python prepares kids for the future by introducing them to one of the most
widely used programming languages in the world. It is a gateway to exciting fields such as artificial
intelligence, data science, robotics, and web development. Learning Python at an early age not only
boosts logical thinking and problem-solving skills but also builds confidence to tackle more complex
programming languages later on. With its abundant learning resources and supportive community,
Python opens doors to endless possibilities, empowering kids to be creators and innovators in an
increasingly tech-driven world.

ADVANTAGES OF LEARNING PYTHON:

Python is one of the best programming languages for children to start their coding journey. Its
simplicity and versatility offer numerous benefits that go beyond just learning to program. Here are
the key advantages:

Easy to Understand:
Python’s simple and readable syntax makes it ideal for kids. They can quickly grasp
programming concepts without being overwhelmed by complex code structures.

Builds Problem-Solving Skills:
Coding in Python teaches kids how to break down problems into smaller steps, fostering
logical thinking and structured reasoning.

Encourages Creativity:
Python enables kids to create games, animations, and applications, allowing them to bring
their ideas to life and express their creativity.

Widely Used in Real-World Applications:
Python’s widespread use in fields like artificial intelligence, data science, and web
development makes it a valuable skill for the future.

Future-Ready Skill:
Learning Python early positions kids for success in a technology-driven world, opening up
career opportunities in various industries as they grow.

Prepares for Advanced Topics:
Python acts as a stepping stone for exploring more advanced topics such as machine learning,
robotics, and IoT.

CEDURA © Copyrighted Content. All rights reserved

11

CEDURA © Copyrighted Content. All rights reserved

How to Block Code?

Block coding is simple and can be used by all children. We have provided blocks and instructions to
guide you through your learning process. This is especially suitable for young kids from 8 to 12 years
age group. However, younger kids can also try Block Coding and build simple skills.

You will find different types of Blocks in this kit, which serve as the fundamental building units for
creating Python programs. Programming using these physical blocks involves dragging and placing
these blocks on the magnetic board, connecting them to form a sequence to solve a problem, In this
manual, we will explore how Python programming works in Block Coding, dive into the various
categories of blocks available, and outline the basic steps to get started. Additionally, we are offering
exciting beginner projects to help you kick-start your coding journey and unleash your creativity.

Please note that even though this Blocking Coding kit, was designed with inspiration from MIT Scratch
Block coding, there are limitations in using these physical Blocks. Hence, a few Blocks are not
available and also few Blocks are modified to build this physical Block Coding kit. The goal is to create
an environment where kids to learn and practice coding without any digital device. There is no
limitation for challenges, creativity and coding.

SAMPLE PROJECT 1:

Create a Python Block code to add two number and print the output.

Coding Steps:

1. Select the required code block to solve the above problem. In this case, we need different blocks

a. An EVENT block to start the sequence

b. A VARIABLE block to hold a number.

c. An OPERATOR & VALUE block to assign value to the variable.

d. A VARIABLE block to hold a second number.

e. An OPERATOR & VALUE block to assign value to the second variable.

f. A VARIABLE block to hold a result.

g. VARIABLE & OPERATOR blocks to add the above variables

h. An OUTPUT block to display the result

i. An END Block to indicate end of the program

Algorithm:

1. Start the Program

2. Consider a variable and assign a number (num1)

3. Consider another variable and assign a number (num2)

4. Now, add both num1 and num2 and store the result in another variable (sum)

5. Print the result (sum)

6. End the Program

12

2. Select the right Code Blocks from the kit. You could use your algorithm thinking to decide on the
Blocks to solve the given problem.

3. Use the output Chart as required to store the intermediary and/or final output values

4. Join / Snap the selected Code Blocks as per the logic following the sequence of activities. It is
recommended to write down your algorithm so that you can simply follow it.

5. Code Blocks are supplied blank, with few having white spaces. Here, you can write the value or
text as per the problem statement. Please be careful not to leave permanent marks.

6. On the OUTPUT side, you could write whether the output i.e., the sum of two numbers

7. The END block indicates the end of the code block.

SAMPLE PROJECT 2:

Create a Python Block code to identify whether a person is eligible to vote or not.

Algorithm:

1. Start the Program

2. Consider a variable (age) and assign the age of the person (22)

3. Check the condition i.e., whether the age of the person is greater than or equal to 18

4. The result could be TRUE or FALSE.

5. If TRUE, print ‘Eligible’

6. If FALSE, print ‘Not Eligible’

7. End the Program

CEDURA © Copyrighted Content. All rights reserved

num1 5

num2 6
sum num1 num2
sum

13

Steps:

1. Select the required code block to solve the above problem. In this case, we need different blocks

a. An EVENT block to start the sequence

b. A VARIABLE block (used along with connector block) to hold age.

c. A VALUE block to assign value to the age variable.

d. A CONDITIONAL block to make a decision

e. A VARIABLE block for comparing

f. A VALUE block to use in comparison

g. An OUTPUT block to print the desired message when the condition is TRUE

h. A VALUE block to declare a message.

i. A CONDITIONAL block to act when the condition is FALSE.

j. An OUTPUT block to print the desired message when the condition is FALSE.

k. A VALUE block to declare a message.

l. An END Block to indicate end of the program

2. Select the right Code Blocks from the kit. You could use your algorithm thinking to decide on the
Blocks to solve the given problem.

3. Use the output Chart as required to store the intermediary and/or final output values

4. Join / Snap the selected Code Blocks as per the logic following the sequence of activities. It is
recommended to write down your algorithm so that you can simply follow it.

Assigning value (21) to the variable (age)

Conditional logic. Comparing a variable
(age) with a conditional value (18)

If the above condition results TRUE, this
Print works - Output “Eligible”

If the above condition results FALSE,
this Print works - Output “Not Eligible”

CEDURA © Copyrighted Content. All rights reserved

age 22
age 18
Eligible

Not Eligible

age 22
age 18
Eligible

Not Eligible

14

5. Code Blocks are supplied blank, with few having white spaces. Here, you can write the value or
text as per the problem statement. Please be careful not to leave permanent marks.

6. On the OUTPUT side, you could write whether the output would be ‘Eligible’ or ‘Not Eligible’

7. The END block indicates the end of the code block.

CEDURA © Copyrighted Content. All rights reserved

What is a Statement?
A statement in Python is a single line of code or instruction that performs a specific action. It can
include variable assignments, function calls, control flow structures, or other programming
commands. For example, x = 10 is an assignment statement that sets the value of x to 10, while
print(x) is a statement that outputs the value of x. Python executes statements sequentially unless
control flow statements like if, while, or for alter the order. Statements do not always produce a
value; their primary purpose is to instruct the interpreter to perform an action. Understanding
Python statements is essential for organizing and structuring code effectively.

Example Statements:

var = 10

sum = num1 + num2

if a > 5 and b <10 :

What is an Expression?
An expression in Python is a combination of variables, operators, and values that evaluates to a result
or value. For example, 2 + 3 is an arithmetic expression that evaluates to 5, while x > 5 is a Boolean
expression that evaluates to True or False depending on the value of x. Expressions can be used within
statements to compute values or control program flow.. Unlike statements, expressions always return a
value, making them fundamental to calculations and decision-making in Python programs.

Example:

var = 10

Operand Operand

Operator

Expression is made of
operands (variables or
values) and operators

15

CEDURA © Copyrighted Content. All rights reserved

Understanding Data & Data Types

Data is a measurement or an observation. In generic terms, Data refers to the raw information that
can be collected, processed, and used for various purposes. In programming, data serves as the
foundation for building software and performing computational tasks. Data can represent facts,
observations, or instructions that are stored and manipulated by a program. Examples of data include
numbers, text, images, and measurements. How data is organized and categorized plays a critical role
in ensuring its effective use, which is why programming languages define data types to classify and
manage different kinds of data.

Data types specify the kind of value a variable can hold and dictate the operations that can be
performed on it. Common data types include integers, floating-point numbers, strings, and Boolean
values. For example, integers represent whole numbers, while floating-point numbers handle
decimals. Strings are sequences of characters used to represent text, and Boolean values (True or
False) are used in decision-making logic. Advanced data types, such as lists, tuples, sets, and
dictionaries, allow programmers to work with collections of data efficiently. Understanding data and
its types is fundamental in programming as it ensures proper utilization of memory, avoids errors,
and enables the creation of robust applications.

Integer (int)

The integer data type in programming represents whole numbers, both positive and
negative, without any decimal or fractional components. In Python, integers are
defined using the int class, and they can handle a wide range of values, as Python
supports arbitrarily large integers. This makes the integer data type highly versatile for
mathematical operations such as addition, subtraction, multiplication, and division.
Integers are commonly used in programming for tasks like counting iterations in loops,
indexing elements in data structures, and performing calculations. Declaring an integer
in Python is straightforward, as the interpreter automatically assigns the int type to
whole number values.

Example: var = 10

Float (float)

The float data type in programming is used to represent real numbers that contain
decimal points or fractions. In Python, floats are defined using the float class and can
handle a wide range of values, including very small or very large numbers. Floats are
commonly used in applications requiring precision. For example, assigning x = 3.14
creates a float variable x representing a decimal number.

Example: temp = 10.534
 height = 5.2

In Python, there is no
need to explicitly declare
variables while assigning

value.

16

CEDURA © Copyrighted Content. All rights reserved

String (str)

The string data type in programming represents a sequence of characters, such as
letters, numbers, symbols, or spaces, enclosed within quotes. In Python, strings are
defined using the str class and can be created using single quotes ('), double quotes ("),
or triple quotes (''' or """) for multi-line strings. Strings are widely used for storing and
manipulating text in various applications, such as displaying messages, processing user
input, and generating dynamic content. Strings are immutable, meaning their values
cannot be changed once created, although operations can produce new strings. This
immutability ensures reliability when handling text data in Python programs.

Example: name = ‘python’
 loc = ”Hyderabad”

Always use single,
double or triple quotes
while assigning a string

value

Boolean (True / False)

The Boolean data type in programming represents one of two possible values: True or
False. In Python, Booleans are defined using the bool class and are commonly used in
decision-making and logical operations. Boolean values arise as the result of
comparisons or conditions, such as 5 > 3 (which evaluates to True) or 4 == 7 (which
evaluates to False). They play a critical role in controlling the flow of a program
through conditional statements (if, else, elif) and loops (while, for). Boolean operators
like and, or, and not are used to combine or negate logical expressions, allowing for
more complex decision-making. For example, the expression x > 0 and y < 10 evaluates
to True only if both conditions are true. Booleans are foundational to programming,
enabling the development of responsive, dynamic, and logical code structures.

Example: abc = True
 print(type(abc))
 if age >= 18:

Please Note: There are other data types however, at this learning level it is fine to learn these
basic data types.

Complex (a + bj)

The complex data type in Python represents complex numbers, consisting of a real
part and an imaginary part. Complex numbers are written as a + bj, where a is the real
part, b is the imaginary part, and j represents the square root of -1 (the imaginary
unit). Python’s built-in complex type is particularly useful in mathematical
computations, especially in fields like signal processing, physics, and engineering,
where operations with complex numbers are common. Python supports arithmetic
operations with complex numbers.

Example: var = 3 + 5j

Here, every condition
will result in a Boolean

output, even the
multiple conditions

17

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Identify the below data types.

i. 23 _____________

ii. -26 _____________

iii. 0 _____________

iv. -12.5 _____________

v. true _____________

vi. false _____________

vii. 3+4j _____________

viii. “Hii” _____________

18

EVENT Blocks

Event blocks are the orange blocks in the kit that are with a rounded top. These are the fundamental

categories in block coding that act as triggers for executing actions in a program. These blocks

respond to specific events or user interactions. In our kit, you will find a couple of Event Blocks that

could be used while working on coding.

The event blocks are the ones that begin each sequence of code and even at the end. Except for the

‘Connector Block’, you cannot add the blocks in between the code. The ‘Start Block’ job is to wait for

a specific event to happen or send a message to other blocks so they can tell the code blocks below

them to go! The ‘End Block’ will always be located at the end of the Program.

In this manual Python Block Coding kit, you will find the Event Blocks. As we do not have any digital

devices these blocks represent actions which would be mimicked by the user. These blocks will make

the user understand how an event will trigger a set of actions (lines of code).

UNDERSTANDING BLOCKS

Start Block End Block (short) End Block (extended)

Start Block

The “Start” event block is used to start executing the chain of code only. If you have worked on other

Block Coding applications you must have used this type of block earlier. However, we do not have any

‘event’ based triggering here. Using this block indicates the start of the code.

PRACTICE 1

Problem Statement: Build a Python Block Code to load a variable with value.

temp 10

Code Explanation: As per the problem statement we are expected to load a value into the
variable. For that, we have started with the ‘Start’ event block which indicates the start of
the program. This is followed by other coding blocks that meet the requirement.

CEDURA © Copyrighted Content. All rights reserved

End Block (long)

Connector ExtendedConnector Block

Output:

Note: As there is no print statement
hence there is no output

19

Connector Block

The “Connector” event block is used to connect variables and make them part of the coding. These are

usually used under the ‘Start’ event block and wherever you need to assign value to the variables or

manipulate the existing value. They help in connecting variables or conducting some operations on the

variables.

PRACTICE 1

Problem Statement: Build a Python Block Code to load a variable with a value.

temp 10

Code Explanation: In the earlier example we have already used the ‘Connector’ block to
work on the variables. This is the way we use the ‘Connector’ block to assign values to the
variables or to manipulate them.

End Block

The “End” event block is always used at the end of the program. This indicates the completion of the

code. You would find two different ’End’ event blocks in the kit, one with a shorter ‘top notch’ and the

other one with a longer ‘top notch’. Please note that Python minds spaces (indentation). Meaning you

cannot give or leave spaces in the code and all the code blocks should appear in a line. However, when

working on advanced programs you will need extended ‘End’ block to maintain the alignment of the

coding blocks.

PRACTICE 1

Problem Statement: Build a Python Block Code to load a variable with a value.

temp 10

End Block (short) End Block (extended)

CEDURA © Copyrighted Content. All rights reserved

End Block (long)

Connector Connector Extended

Extended Connector is used
in the nested ‘for’ and nested

‘while’ concepts.

Output:

Note: As there is no print statement
hence there is no output

Output:

Note: As there is no print statement
hence there is no output

20

Code Explanation: Again, consider the earlier example where we have used an ’End’ event
block to indicate the end of the program. There cannot be any other programming blocks
beyond the ‘End’ block. It should be the last block of the coding.

PRACTICE 2

Problem Statement: Build a Python Block Code with an if conditional statement to demonstrate the

usage of the ’extended’ End Block.

CEDURA © Copyrighted Content. All rights reserved

age 22
age 18
“Eligible”

“Not Eligible”

Code Explanation: This code is a higher-level one however, used here to showcase how we
could use the ‘extended’ End block to maintain the code alignment. Maintaining the
alignment spacing or indentation is an important aspect of Python Programming.
Remember that Python minds extra spaces, hence, do not leave any extra spacing
unnecessarily.

Using Extended End here

Understanding Indentation

Indentation in programming refers to the spaces or tabs used at the beginning of a line of code to
define its structure and hierarchy. In Python, indentation is not just a matter of style; it is a
fundamental part of the syntax. It indicates that an indented block of code is under the above
statement. In the below example print(Do not use extra spaces in Python as it will violate its syntax.

Unlike many other programming languages where braces {} or keywords are used to define blocks of
code, Python relies on indentation to determine the grouping of statements.

age 16
age 18
“Eligible”

“Not Eligible”Indentation

Python minds spaces
(indentation). Please do not use

extra spaces. Use the correct
blocks to match the syntax

While representing strings always
encapsulate text inside quotes(“).

You can use single or double
quotes

Output:

Eligible

Output:

Not Eligible
21

CEDURA © Copyrighted Content. All rights reserved

Exploring Variables

Variables in Python are the containers that store data values inside them. We assign values (integer,
float, string or Boolean) to a variable. After assigning, these variables can be referenced and
manipulated throughout a program. Every variable should have a meaning name which we call as an
‘identifier’.

Python is dynamically typed, meaning you don’t need to declare the type of a variable explicitly—
Python determines the type based on the value assigned. For instance, writing x = 10 creates an
integer variable x with the value 10, and later assigning x = "Hello" reassigns it to a string. This
flexibility makes Python easy to use and beginner-friendly.

Python provides a simple syntax for creating variables, requiring only an assignment operator (=) and
a valid variable name. Variables are fundamental in programming because they enable you to
perform calculations, store user input, and process data dynamically. Variable names must start with
a letter or an underscore and can contain letters, numbers, and underscores but cannot have spaces
or special characters.

Python is case-sensitive, so ‘Name’ and ‘name’ are treated as different variables. This rule applies
even for the data or value.

Example: age = 15
 marks = 55.5
 loc = ”Hyderabad”

Right side are the values
assigned to the respective

variables
Left side are the variables that

store the assigned values
(different data types)

var = 85
As assigned an integer value (85) to the variable (var),
the datatype of the variable will be integer. Variables

take up the data type of the value they carry

var = 5.76
Now, to the same variable we have assigned a new
value (5.76) which is a float value. Hence, now the

variable (var) will take up its datatype as float.

var = “Python” Here, data value changed to String (“Python”). Hence,
the data type of the variable (var) will be string now.

Note that the variable
simply takes up the data

type of the value it is holding

‘var’ is the identifier
(or name) of a variable

Valid Variable Identifiers :
stu_Name
subject1
empSal

Invalid Variable Identifiers :
1stu_Name
subject@new

22

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to assign a variable with a value.

Code Explanation: In this program, we have considered a variable ‘age’ (identifier of a
variable) and assigned it with an integer value (15). Now, the variable ‘age’ is storing a value
i.e. 15. This variable could be used in the program as required. Note that the data type of
the variable ‘age’ will be ‘ integer’ as it stores an integer value (15) in it.

age 15

PRACTICE 2

Problem Statement: Build a Python Block Code to assign a variable with a value and print it.

Code Explanation: In this program, we have two steps. First, we are assigning a float value
(74.5) to the variable ‘marks’ (identifier of a variable). Second, we are using the ‘marks’
variable and printing it. Once the ‘print’ function is executed the output will display as 74.5,
as this is the value the variable ‘marks’ is storing inside it. Note that the data type of the
variable ‘marks’ will be ‘ float’ as it stores a float value (74.5) in it.

marks 74.5

marks

PRACTICE 3

Problem Statement: Build a Python Block Code to assign multiple values to multiple variables.

Code Explanation: In this program, we have two rows of blocks where we are considering
two different variables (‘name’ and ‘age’) and assigning two different values respectively
(”Python” and 25). Now the first variable data type will be ’string’ as it stores a string value
and the second variable data type will be ‘integer’ as it has an integer in it.

name “Python”

age 25

Output:

Note: As there is no print statement
hence there is no output

Output:

74.5

Output:

Note: As there is no print statement
hence there is no output

23

CEDURA © Copyrighted Content. All rights reserved

Identifying Variable Data Type

We have learned that every variable has its own data type, and it depends on the type of value it is
storing in it. For instance, if you assign an integer to a variable, the data type of that variable will be
an integer as it has an integer value in it. However, while working with variables sometimes you
would like to find out the data type of the variable. This situation may occur when multiple
developers are working on a big program and everyone is creating new variables. Before working on
an unknown variable, created by someone else, you would like to find its data type. This is where we
will use the ‘type()’ function.

In Python, type() function is used to determine the data type of a given variable or object. The type()
function is a powerful tool for understanding the nature of a variable or object, especially when
working in dynamically typed languages like Python where variables do not have explicit type
declarations.

Example: age = 15
 marks = 55.5
 loc = ”Hyderabad”

Syntax: type(object)

PRACTICE 1

Problem Statement: Build a Python Block Code to assign a variable with a value and find its data type.

Code Explanation: In this program, we have considered a variable ‘age’ (identifier of a
variable) and assigned it with an integer value (15). Now, the variable ‘age’ is storing a value
i.e. 15 hence, its data type will be ‘integer’. In the next line, we are using the type() function
to identify the data type of the variable ‘age’. In this case, the output will be <class ‘int’> as
the ‘age’ variable stores an integer in it.

age 15

age

PRACTICE 2

Problem Statement: Build a Python Block Code to assign multiple variables with data and find their

respective data types

Assigning an ‘int’ value
to the variable ‘age’

Identifying the data type of
the variable and printing it

Output:

<class ‘int’>

24

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we have two variables ‘age’ and ‘marks’ assigned with
two different values 15 (integer) and 55.5 (float), respectively. In the subsequent lines of
code, we are trying to identify the data type of these variables individually by using the type()
function. The output would display <class ‘int’> for the ‘age’ variable and <class ‘float’> for
the ‘marks’ variable.

age 15

age

marks 55.5

marks

Assigning an ‘int’ value
to the variable ‘age’

Assigning a ‘float’ value
to the variable ‘marks’

Prints the data type of
both the variables

TOPIC ASSIGNMENT

1. Build a Python Block Code to assign a value to a variable and print it.

2. Build a Python Block Code to assign two variables with different values.

3. Build a Python Block Code to assign a value to a variable and then change/update the value

4. Build a Python Block Code to find out the data type of any two variables with given values:

price = 56.45, loc = “Hyd”, count = 56.

5. Build a Python Block Code to assign a name and a subject mark of a student and print them.

Also, print its data type.

6. Build a Python Block Code to assign a Float value to a variable and find its data type.

7. Build a Python Block Code to assign a Boolean value to a variable and find its data type.

8. Build a Python Block Code to assign a String value to a variable and find its data type.

Output:

<class ‘int’>
<class ‘float’>

25

CEDURA © Copyrighted Content. All rights reserved

Type Casting in Variables

Type casting in Python refers to converting one data type into another. This process is essential when
working with data from different sources or formats, ensuring compatibility and enabling operations
that would otherwise result in errors. Python provides built-in functions such as int(), float(), str(),
list(), and tuple() for explicit type casting. For example, converting a string "123" to an integer can be
done using int("123"), allowing mathematical operations on the converted value. Similarly,
typecasting can be used to handle user inputs, which are typically strings, by converting them into the
required types for calculations or logical operations.

To typecast or change the data type of variables we use below blocs:

Data type of ‘age’
variable is ‘integer’

type(age)

Output: <class ‘int’>

To convert the variable
into an integer data type

To convert the variable
into a float data type

To convert the variable
into a string data type

Example 1:
age = 15

To convert ‘age’
variable into ‘float’

float(age)

type(age)

Output: <class ‘float’>

Converts variable
into float (15.0)

To convert ‘age’
variable into ‘string’

str(age)

type(age)

Output: <class ‘str’>

Converts variable
into string (‘15’)

age 15

age

age

age_new

Assigning an ‘int’ value
to the variable ‘age’

Printing the data type of the variable
(Output: <class int>)

Changing the content of the
variable to ‘float’ and assigning
it to a new variable ‘age_new’

Printing the data type of the
variable (Output: <class float>).

The value will be 15.0

age_new

Output:

 <class ‘float’>

26

CEDURA © Copyrighted Content. All rights reserved

age 15

age

age

age_new

Assigning an ‘int’ value
to the variable ‘age’.

Printing the data type of the variable
(output: <class int>)

Changing the content of the
variable to ‘string’ and assigning it

to a new variable ‘ age_new’.

Printing the data type of the
variable (Output: <class string>).

The value will be ‘15’.

Data type of ‘marks’
variable is ‘float’

type(marks)

Output: <class ‘float’>

Example 2:
marks = 55.5

To convert ‘marks’
variable into ‘int’

int(marks)

type(marks)

Output: <class ‘int’>

Converts variable
into int (55)

To convert ‘marks’
variable into ‘string’

str(marks)

type(marks)

Output: <class ‘str’>

Converts variable
into string (’55.5’)

marks 55.5

marks

marks1 age

marks1

Assigning a ‘float’ value to the
variable ‘marks’

Printing the data type of the variable
(Output: <class float>)

Changing the content of the
variable to ‘int’ and assigning it to

a new variable ‘marks1’.

Printing the data type of the
variable (output: <class int>).

The value will be ‘55’.

age_new

Output:

<class ‘str’>

Output:

<class ‘int’>

27

CEDURA © Copyrighted Content. All rights reserved

Data type of ‘val’
variable is ‘string’

type(val)

Output: <class ‘str’>

Example 3:
val = “10”

To convert ‘val’
variable into ‘int’

int(val)

type(val)

Output: <class ‘int’>

Converts variable
into int (10)

To convert ‘val’
variable into ‘float’

float(val)

type(val)

Output: <class ‘float’>

Converts variable
into float (’10.0’)

Note: There are other types of data type conversions however, for the current level of
learning we will focus on these three primary type casting (integer, float, string)

Number looking string

Data type of ‘loc’
variable is ‘string’

type(loc)

Output: <class ‘str’>

Example 4:
loc = “hyderabad”

String with characters

It is not possible to
convert the string with

characters into ‘integer’ or
‘float’

val “10”

val

val_dt val

Val_dt

Assigning a ‘string’ value to
the variable ‘val’

Printing the data type of the variable
(Output: <class str>)

Changing the content of the
variable to ‘int’ and assigning it to

a new variable ‘val_dt’.

Printing the data type of the
variable (output: <class int>).

The value will be integer 10.Output:

<class ‘int’>

28

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to convert the content of the variable price
= 24.5 into an integer.

2. Build a Python Block Code to convert the content of the variable height
= 5 into a float.

3. Build a Python Block Code to convert the content of the variable name
= “56” into an integer.

29

CEDURA © Copyrighted Content. All rights reserved

Operators in Python

Operators in Python are special symbols or keywords used to perform operations on variables and
values. They are the building blocks of any programming language and help in creating expressions
for calculations, comparisons, and logical decisions. Python supports several types of operators,
including

• arithmetic operators (e.g., +, -, *, /) for mathematical operations
• assignment operators (e.g., =, +=, -=) to assign values to variables
• comparison operators (e.g., ==, !=, >, <) to compare values and return Boolean results
• membership operators (e.g., in, not in) to check the presence of an item in a sequence
• logical operators (e.g., and, or, not) to combine more than one expression
• bitwise operators (&, |, ^) for operations on binary numbers
• identity operators (is, is not) are used to compare the memory location of two objects

These operators allow developers to handle simple and complex computations efficiently. Operators
make Python a versatile language for different programming tasks, from simple arithmetic to
advanced data manipulation. Understanding and using operators effectively is crucial for writing
efficient and readable Python programs.

Arithmetic Operators

Add

Used to perform arithmetic addition of two
variables or values

age 5

Code Explanation: Here, we are adding value 5 to the content of the
variable ‘age’ and printing the final output.

Used to perform arithmetic subtraction of
two variables or values

marks 5

Code Explanation: Here, we are subtracting value 5 from the content of the
variable ‘marks’ and printing the final output.

Subtract

Used to perform arithmetic multiplication
of two variables or values

num1 2

Code Explanation: Here, we are subtracting value 5 from the content of the
variable ‘marks’ and printing the final output.

Multiply

Used to perform arithmetic division of a
variable (or value) by another

month

Code Explanation: Here, we are dividing the content of the ‘month’ variable
with 12 and the result will be printed.

Divide

12

30

CEDURA © Copyrighted Content. All rights reserved

Mod returns the remainder of the division
operation.

num

Code Explanation: Here, the content of the ‘num’ variable will be divided
by 2. After division, the remainder will be printed.

2

Mod

Floor division divides two numbers and
returns the largest integer less than or
equal to the result

num

Code Explanation: Here, the content of the ‘num’ variable will be divided
by 3 and outputs the value after discarding the fractional or decimal part of
the division result and returning the integer part. For instance, If the value in
the ‘num’ is 10 then, 10 // 3 will give an output as 3 (rounding to the nearest
integer)

3

Floor Division

It is different from division
which results in the exact

quotient as a float number

Exponentiation raises a number (the base)
to the power of another number (exponent)

val

Code Explanation: Here, the content of the ‘val’ variable (base) will be
raised to the power of 2 (exponent) and the result is printed.

2

Exponentiation

Assignment Operator

This operator is used to assign a value (or
another variable) to a variable.

age 5

Code Explanation: Here, we are assigning a value 5 to the variable ‘age’.

Equal to

Comparison Operators

This operator is used to check whether a
value or a variable is lesser than another
value (or a variable)

age 15

Code Explanation: Here, we are checking whether the age is less than 15.
If the age is less than 15 it will return TRUE, otherwise it will return FALSE

Lesser than

31

CEDURA © Copyrighted Content. All rights reserved

This operator is used to check whether a
value or a variable is lesser than or equal
to another value (or a variable)

age 15

Code Explanation: Here, we are checking whether the age is less than or
equal to 15. If the age is less than or even equal to 15 it will return TRUE,
otherwise it will return FALSE

Lesser than
or Equal to

This operator is used to check whether a
value or a variable is greater than another
value (or a variable)

age 18

Code Explanation: Here, we are checking whether the age is greater than
18. If the age is greater than 18 it will return TRUE, otherwise it will return
FALSE

Greater than

This operator is used to check whether a
value or a variable is greater than or equal
to another value (or a variable)

age 18

Code Explanation: Here, we are checking whether the age is greater than
or equal to 18. If the age is greater than or even equal to 18 it will return
TRUE, otherwise it will return FALSE

Greater than
or Equal to

This operator is used to check whether a
value or a variable is equal to another
value (or a variable)

age 18

Code Explanation: Here, we are checking whether the age is EQUAL to 18.
If the age is equal to 18, it will return TRUE, otherwise it will return FALSE

Equals to

Single ‘=‘ symbol is used for
variable assignment and

double equal to ‘==‘ is used
for comparison

This operator is used to check whether a
value or a variable is not equal to another
value (or a variable)

age

Code Explanation: Here, we are checking whether the age is NOT EQUAL
to 18. If the age is not equal to 18, it will return TRUE, otherwise it will return
FALSE

Not Equal

18

32

CEDURA © Copyrighted Content. All rights reserved

Logical Operators

This operator is used to combine two or more expressions/conditions. The
output will be TRUE only when both the expressions are TRUE and vice-versa.

Code Explanation: Here, we have two expressions - age greater than 18
and height greater than 6. When these two conditions result in TRUE then
only the resultant will be TRUE

AND

age 18 height 6

This operator is used to combine two or more expressions/conditions. The
output will be TRUE when one of the expressions is TRUE. The output will be
FALSE only when both the expressions result FALSE

Code Explanation: Here, we have two expressions - age greater than 18
and height greater than 6. For the output to be TRUE any of the expressions
should be TRUE. The output will be FALSE only when the age is not greater
than 18 and the height is not more than 6.

age 18 height 6

OR

NOT

This operator is used to invert the truth value of a condition or Boolean
expression. It is a unary operator, meaning it operates on a single operand.
When the condition or expression TRUE, it makes it FALSE and vice-versa.

Code Explanation: Here, we have an expression to check whether the age
is greater than 18 or not. In case the age is greater than 18 it should result in
TRUE. However, as we are using ‘NOT’ which will invert the truth value the
output will be FALSE.

age 18

33

CEDURA © Copyrighted Content. All rights reserved

Membership Operators

This operator is used to check whether a specific value exists within a sequence
or collection such as strings, lists, tuples, etc. Result TRUE if the value is
present. IN

5 2,6,9,5,3,6,9

Code Explanation: Here, we have a sequence (having a series of items or
values). The intention is to check whether a value 5 exists within this
sequence or not. If the value is found in the sequence the result will be
TRUE, else FALSE. In this case, we have the value 5 available in the
sequence hence the result will be TRUE.

This operator is used to check whether a specific value does not exist within a
sequence or collection, such as strings, lists, tuples, etc. Result TRUE if the
value is not present.

5 2,6,9,5,3,6,9

NOT IN

Code Explanation: Considering the earlier example using the ‘not in’
operator, as the value 5 is available in the sequence the output will be
FALSE. It works opposite to the ‘in’ operator. It is used to verify that an item
is absent from a collection of items.

Other Operators

This blank operator block is used to replace any operator. Supplied with blank
space so that you could write the operator symbol or text as you like to fulfil your
coding requirement. Blank

This spacer operator block can be used between variables or values just as a
spacer. You can also use this as a blank operator and write a symbol or text
when you are falling short of operator blocks. Spacer

Comma
Separator

This comma separator block can be used while working on multiple variables.
Can be used while assigning multiple values (input function) or while printing
multiple variables.

34

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to assign two values as integers to different variables
and perform below athematic operations.

a. Addition

b. Subtraction

c. Multiplication

d. Division

e. Floor Division

2. Build a Python Block Code to assign two values as integers to different variables
and perform the below comparison operations.

a. Greater than

b. Lesser than

c. Greater than or Equal to

d. Lesser than or Equal to

35

CEDURA © Copyrighted Content. All rights reserved

Print Function

The print() function in Python is one of the most commonly used built-in functions, allowing us to
display results or output. Its primary purpose is to output data, making it a vital tool for debugging
and communicating results to users. The print() function takes one or more arguments, separated by
commas, and displays them as a single line of output. For example, print("Hello, World!") prints the
text Hello, World! to the console. Additionally, it supports formatting through tools like f-strings,
concatenation, or the format() method, enabling developers to create clear and informative outputs.

A key feature of the print() function is its flexibility. It automatically adds a new line character (\n) at
the end of each output, though this behaviour can be customised with the end parameter. For
instance, print("Hello", end=" ") outputs Hello (with end space) without moving to a new line.

The function also supports custom separators between multiple arguments via the sep parameter,
such as print("Hello", "World", sep="-"), which outputs Hello-World.

Furthermore, the print() function can handle various data types, including strings, integers, floats,
and even complex objects, making it an essential tool for Python programming. Its versatility and
ease of use ensure that the print() function is a foundational element for beginners and professionals
alike.

In the Python Block Coding we will learn to use print in basic format and work on with variables to get
you familiar with this useful function.

Print Function

Print Block

Syntax:
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Parameters:

1. *Sep:
• Represents one or more objects (values, variables, or expressions) to be
printed.
• Multiple objects can be separated by commas.

2. sep (Optional):
• Defines the string used to separate the objects. Default: A single space (' ').
• Example: print("Hello", "World", sep="-") → Output: Hello-World.

3. end (Optional):
• Defines the string appended after the printed output.
• Default: A newline character ('\n'), which moves the cursor to the next line.
• Example: print("Hello", end="!") → Output: Hello! (without a new line).

4. file (Optional):
• Specifies the file or stream where the output is sent. Default:
sys.stdout (console output).
• Example: print("Hello", file=open('output.txt', 'w')) writes the
output to a file.

5. flush (Optional):
• A Boolean value (True or False) that forces the output buffer
to be flushed immediately if set to True. Default: False. Used
when working with real-time streams.

In this Python Block Coding
we will not be using all the

parameters except the
variables

36

Print (Extended)

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to load a variable with a value and print it.

Code Explanation: In this program, we have considered a variable ‘age’ and assigned value
18 to it. Now using the print function, we are printing the content of the ‘age’ variable.

age 18

age

PRACTICE 2

Problem Statement: Build a Python Block Code to print multiple variables.

Code Explanation: In this program, we have considered two variables ‘name’ and ‘age’ and
assigned them with different values. Using a single print function we have assigned both the
variables as objects to it. The print function will print both variables. This is how you could
handle multiple variables in print.

name “Python”

age 25

name age

PRACTICE 3

Problem Statement: Build a Python Block Code to print a blank line.

age 18

age

Output:

Python, 25

Output:

 18

37

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Write the Syntax of the print function and explain all its parameters.

2. Build a Python Block Code to assign an integer value to a variable and print its data type.

3. Build a Python Block Code to assign product name, price, and quantity and print any two
variables, individually.

4. Build a Python Block Code to assign product name, price, and quantity and print any two
variables using a single print function.

5. Build a Python Block Code to assign salary and designation and print them individually with
a blank line in between.

6. Find the total age of Raju (29 years) and Rajiya (31 years) and print it.

7. What is the total bill amount if the prices of two products are Rs.5 and Rs. 6.50

Code Explanation: In this program, we have assigned a value to the variable. In the next
line, we have used a blank print function. This will print a blank line. This is followed by
another print function that prints the variable. This way, you could print blank lines in the
output.

38

CEDURA © Copyrighted Content. All rights reserved

Input Function

The input() function in Python is a built-in function used to accept user input from the console during
program execution. It allows developers to interact with users by pausing the program until the user
provides the required input. The input() function takes an optional argument, which is a prompt
string displayed to the user, guiding them on what to enter.

Note that the input function always converts and stores the user’s input as a string in the variable.
Since the input() function always returns the input as a string, additional type conversion (e.g., using
int() or float()) is required if numerical input is needed. Recap the type-casting topic we discussed
earlier. Below are the important points about the input function.

• Used to seek value from the user
• Makes programs interactive
• Work on real-time values
• Accepts both numerical and string values
• Converts everything value into a string
• It is always used along with a variable

Despite its simplicity, the input() function is an essential tool for learning Python and creating basic
interactive programs. Using input and print functions together will make the program very interactive
and useful while developing solutions.

Input Function

Syntax:
input(prompt)

Input Block

Parameters:
 prompt Optional) Input function can be used

to seek single or multiple
values from the user

39

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to seek input from the user.

Code Explanation: In this program, we use the input() function to seek marks from the
user. As we know, every input function should have a variable attached to it. When the user
provides the value of the marks, the same would be assigned to the variable ‘stu1’. This is
how the input function works. Whenever a value is given, the same would be stored in a
variable. Now, you can work on ‘stu1’ variable or print it.

stu1 “Please enter marks”

PRACTICE 2

Problem Statement: Build a Python Block Code to seek input from the user and print it.

Code Explanation: In this program, we use the input() function to seek marks from the
user. This program is the same as above, where we are using an input function to seek age
input from the user. As the user provides a value, the same would be assigned to the
variable named ‘age’. Now, the variable ‘age’ is storing the value given by the user. In the
next line, we are printing the variable ’age’ content using the print function.

age “Enter Age Please”

age

Split Block

Syntax:
input(prompt).split()

 split() method is always used along with the input function

split() method is used to seek
multiple inputs from the user.

As we are seeking multiple
inputs, we would need

multiple variables

Output:

Note: As there is no print statement
hence there is no output

Output:

11

40

CEDURA © Copyrighted Content. All rights reserved

You can use the same
method to type cast values

into float.

PRACTICE 1

Problem Statement: Build a Python Block Code to seek multiple values from the user and print them.

Code Explanation: In this program, we are using the split() method of the input function.
This method is used to seek multiple values from the user and load them into multiple
variables, as shown in the 2nd life. If you observe, we have two variables ‘i.e., ‘age’ and
through the input function, we are seeking two values, in the same sequence. The split()
method would split the entered values and load them into the respective variables. The
first entry will go into the first variable i.e., ‘marks’, and the second entry will go into the
second variable i.e., ‘age’. (Here, we are using short variables to minimize the size of the
statement)

“Enter Marks & Age”)marks age

marks age

Type Casting - int / float function Blocks

Recap type-casting, where we learned to convert from one data type to another - Type
Casting. We have also learned that the input() function will always convert all the values into
‘strings’. In case you enter or input a number(say 18), it will be converted into a string (‘18’)
and then assigned to the variable. As it is a string value now, you cannot do any mathematical
operations such as addition, multiplication, etc. This is a common issue we encounter while
using the input() function. Hence, we use Type Casting here.

Example:
age = input(“Enter your age please: “)

Hence,

age = int(input(“Enter your age please: “))

As you provide a value that would
be converted into a string before

assigning to the ‘age’ variable

Here, we are using typecasting. int() will
convert the string back into integer that

could be used as part of the
mathematical operations

Output:

73, 12

41

CEDURA © Copyrighted Content. All rights reserved

It is obvious that we can
perform typecasting (int &

float) only on numerical input
values.

PRACTICE 1

Problem Statement: Build a Python Block Code to seek two values from the user and conduct a

mathematical operation.

Code Explanation: In this program, we are using data type casting to overcome the issue
we face with the input function. As the input function converts the value you enter into a
string before assigning it to a variable, we are using the ‘int()’ function to convert the value
back to an integer. We can also convert the value into a float by using the ‘float()’ function.
Once both the input values are converted into integer values and stored in their respective
variables, we can perform the arithmetic operations. Without type casting into integers or
float we cannot perform arithmetic operations, as they are strings.

num1 “Enter a number”

num2 “Enter another one”

sum num1 num2

sum

string
Converted to

integerStores integer
value

PRACTICE 2

Problem Statement: Build a Python Block Code to seek a value from the user and convert it into a float

data type.

Code Explanation: In this program, we are demonstrating how to convert the input value
into a float data type. We are aware that the input() function will convert the value into a
string, hence, we are using the float() function to convert the string into a float value and
assign to the variable ‘num’. In the next statement, we are printing the content of the num,
which is a float value now.

num “Enter a number”

num

string
Converted to

floatStores integer
value

Output:

Enter a number: 20
Enter another one: 52

72

Output:

Enter a number: 20

20.0

42

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to seek an Employee’s name and print it.

2. Build a Python Block Code to seek the ’first name’ and ‘last name’ of a student
and print them together.

3. Build a Python Block Code to seek an Employee's name and salary using a single
input function and print them.

4. Build a Python Block Code to seek the price (float) value of a product, convert it
into an integer and print it.

5. Build a Python Block Code to seek the Employee’s salary and add Rs.100 and
print the final salary.

6. Build a Python Block Code to seek Science and Social Marks from a student and
print the total marks.

7. Build a Python Block Code to seek the price of a product add Rs.100 as GST and
print the final amount.

43

CONDITIONAL Blocks

Conditional blocks in Python are a fundamental feature that allows programmers to make decisions
and control the flow of their code. These blocks use conditions, typically Boolean expressions (TRUE
or FALSE), to determine which lines of code under the ‘if’ block should be executed. To teach and
practice Python Conditional Blocks we have given the below blocks as part of the kit.

Python uses the if, elif, and else statements to structure conditional logic. For example, an if block
checks whether a condition is True and executes the associated code; otherwise, it moves to the next
block or terminates if there are no further conditions. This makes conditional blocks essential for
creating dynamic programs that respond to different inputs or situations.

One of the advantages of Python’s conditional blocks is their simplicity and readability. The
indentation-based structure ensures that the code is visually clear, which is particularly helpful for
beginners. Conditional blocks are widely used in real-world applications such as validating user input,
controlling loops, or building decision-making algorithms. They also support nested conditions,
allowing programmers to handle more complex logic by combining multiple conditions within the
same program. With features like logical operators (and, or, not) and comparison operators (==, !=, <,
>), Python’s conditional blocks empower developers to write concise and efficient code for a wide
variety of tasks.

Let’s learn about each of these blocks in detail and use them as part of our problem-solving.

CEDURA © Copyrighted Content. All rights reserved

if Conditional Block

The “if” Block is used for decision-making and to make the program dynamic. Every ‘if’ block should

have a conditional block. This condition could be a comparison, membership, or such that would give a

Boolean output (TRUE or FALSE). If the condition results TRUE, meaning the condition is satisfied, the

block under the ‘if’ Block will be executed. In case the condition results FALSE, meaning the condition

is not satisfied, then it would not execute anything.

Syntax:
if <condition>:
 # Code to execute if the condition is True

If Condition Else (short) Else (extended) Elif Condition Match

Case (short) Case (extended) Pass

There could be one or
more executable

statements under the ‘if’
block

44

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to check whether an individual passed in an exam.

score 50

Code Explanation: The logic here is that the marks should be greater than or equal to 35.
Hence, once we assign the marks (50) to the variable (score), we are using an ‘if’ block. The
’if’ block will have a condition to check whether the score variables have a value that is
greater than or equal to 35. If the condition output is TRUE, the control will go under the ‘if’
block and execute the print message “pass” and the program will END. In case the
condition is FALSE, the control nothing will happen or execute and the program will END.

score 35

“Pass”

PRACTICE 2

Problem Statement: Build a Python Block Code to check the password entered by the user. (Assume the

correct password as ‘abcd’.)

Code Explanation: In this program, we are using both the input() function and the if
conditional statement. First, we are seeking a password from the user using the input()
function. As the user enters the password, we assign it to a variable ‘pswd’. Following this
we are using the ‘if’ block with the condition where we check whether the user - given value
is equal to ‘abcd’? In case the user entered value is equal to ‘abcd’ then the if block’s
condition will result in TRUE and the print statement under the ‘if’ block will be executed. If
the entered password is not ‘abcd’ then the condition fails and the print block under the ‘if’
block will not be executed.

pswd

pswd ‘abcd’

“Correct Password”

“Enter Password”

In ‘if’ statements will be executed
only when the condition is TRUE.

Nothing will be done when the
condition is FALSE

The condition that
decides the decision

Output:

Pass

Output:

Enter Password: ‘abcd’

Correct Password

45

CEDURA © Copyrighted Content. All rights reserved

else Block

While using the ‘if’ conditional statement we have noted that statements will be placed under the ‘if’

block and will be executed only with the condition is TRUE. If the condition is FALSE nothing will be

executed. But in real life, we may need to execute 1 or more statements when the condition is TRUE

or FALSE. This is where we use the ‘if-else’ blocks.

The if-else statement is an extension of ‘if’ conditional statement and is used to implement decision-
making in programs. It allows the code to execute different blocks of code based on specific conditions
(TRUE or FALSE). The ‘if’ block introduces the condition, which evaluates to either TRUE or FALSE. If the
condition is TRUE, the code block under the if statement is executed. If the condition is FALSE, the
code block under the optional else statement is executed instead. This makes if-else statements highly
versatile for controlling program flow and handling diverse scenarios.

Syntax:
if condition:
 # Code to execute if the condition is True
else:
 # Code to execute if the condition is False

There could be one or more
executable statements under

the ‘if’ and ‘else’ blocks

PRACTICE 1

Problem Statement: Build a Python Block Code to declare whether an individual passes or fails an

exam.

score 50

Code Explanation: While using the ‘if’ block, we executed a statement only when the
condition is TRUE. In this code, we have both ‘if’ and ‘else’, each with a statement under it.
This means that if the condition (whether the score is greater than or equal to 35) results in
TRUE, the statement under the ‘if’ block will execute, and if the condition results in FALSE
the statement under the ‘else’ block will execute. We say that depending on the condition
at least one block of code will be executed (either under ‘if’ block or under the ‘else’ block)

score 35

“Pass”

Else (short) Else (extended)

“Fail”

Executed when the
Condition is TRUE

Executed when the
Condition is FALSE

Note: Extended else block is used in
the nested if examples.

Output:

Pass

46

CEDURA © Copyrighted Content. All rights reserved

elif Block

We have worked with ‘if’ and ‘else’ to understand that if the condition is TRUE, the statements under
the ‘if’ will be executed, and if the condition is FALSE, the statements under ‘else’ will be executed.
However, in real life, the complexity increases, and you may need to check another condition when
the first or primary condition results in FALSE. Meaning there is if added to the else, hence, elif (else +
if).

The elif statement in Python stands for “else if” and is used to check multiple conditions in a sequential
manner. It follows an if block and precedes an optional else block, allowing programs to test additional
conditions if the initial if condition is not met. The ‘elif’ statement ensures that only the first condition
that evaluates to True is executed, skipping all remaining conditions. This makes it a powerful tool for
handling complex decision-making scenarios without nesting multiple if statements, which can make
code less readable.

Syntax:
if condition1:
 # Code to execute if condition1 is True
elif condition2:
 # Code to execute if condition2 is True
elif condition3:
 # Code to execute if condition3 is True
 ...
 ...
else:
 # Code to execute if none of the conditions are True (optional)

The ‘elif’ block is a
combination of two blocks

‘else’ + ‘if’. You can have
multiple ‘elfi’ blocks

PRACTICE 1

Problem Statement: Build a Python Block Code to declare whether an individual achieved first class,

passed or failed in an exam. (Hint: Greater than or equal to 60 is First Class, Greater than or equal to

40 is Pass, and less than 40 is Fail.)

score 70

score 60

“First Class”

“Fail”

score 40

“Pass”

This is the primary
condition associated

with the ‘if’ block

When the first condition ‘fails’,
it will come to ‘elif’ where there

is another condition (2nd)

When both the above
conditions fail, then the

‘else’ block will be executed.

Assigning marks to the
‘score’ variable

Output:

 First Class

47

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we are using ‘elif’ in place of ‘else’ because we have an
additional condition to check when the first condition fails (score >= 60). The ‘elif’ block is a
combination of ’else’ and ‘if’. That means when the first condition fails, technically, the
control will go to the ‘else’, but here we have ‘elif’ (an else with if condition score >=40).
Here, the 2nd condition will be checked. If the 2nd condition results in TRUE then the
statement under it will be executed (‘pass’). In case this condition too fails or results in
FALSE, then the final ‘else’ will be executed (‘fail’).

PRACTICE 2

Problem Statement: Build a Python Block Code program using ‘elif’ to achieve the mentioned

output. If the temperature is greater than 35 - Hot; if the temperature is greater than 25 - Warm; if

the temperature is greater than 15 - Cool; otherwise it is Cold.

temp 35

“Hot”

“Cold”

temp 25

“Warm”

This is the primary
condition associated

with the ‘if’ block

When the first condition ‘fails’, it
will come to ‘elif’ where there is

another condition (2nd)

When all the above
conditions fail, then the

‘else’ block will be executed.

temp 15

“Cool”

When both the above conditions
‘fail’ it will come to another ‘elif’ to

check another condition (3rd)

Assigning temperature
value to the ‘temp’ variable

The ‘else’ block will be
executed only when all the

above conditions fail or result
in FALSE

Code Explanation: This program is a good example of the usage of multiple ‘elif’
statements. When we have multiple conditions that need to be checked, one after another,
to arrive at a conclusion, we can use the ’elif’ block multiple times. In this example we are
checked 3 conditions - the primary one that goes with the ‘if’ block, the second one that
goes with the ‘elif’ block and the final one that goes with the final ‘elif’ block. We have an
‘else’ block at the end which will only be executed when all the above conditions results in
FALSE.

Even though optional, it is
recommended to use an ‘else’ block at

the end for some action when every
condition fails

temp 30

Output:

Warm

48

CEDURA © Copyrighted Content. All rights reserved

Pass Block

In Python, the pass statement is a placeholder that does nothing when executed. It is often used in
situations where code is syntactically required but no operation is desired, allowing the program to
continue running without errors. The pass statement ensures that the program compiles and runs
without any logical action taking place, providing a clean and error-free way to outline the structure of
code before completing it

For example, the pass statement is useful in creating empty code blocks, such as within if, functions,
classes, or loops, during the development phase when the actual implementation is not yet ready. It
essentially acts as a “do nothing” operation, enabling the developer to define structures like an empty
function or class without causing an IndentationError or SyntaxError.

Syntax:
if condition1:
 pass

for var in sequence:
 pass

The ‘pass’ block can be used
anywhere, where you don’t

have the code ready, just like
a placeholder.

PRACTICE 1

Problem Statement: Demonstrate usage of the ‘pass’ statement in an ’if’ conditional program.

score 50

score 60

Assigning marks to the
‘score’ variable

First condition associated
with the ‘if’ block

Placeholder or nothing to execute. Used
when the logic or program is not yet ready

Code Explanation: In this program, we are using the ‘pass’ block under the ‘if’ condition. It
means that even if the condition results as TRUE and the control goes under the ‘if’ block, it
will encounter the ‘pass’ block which does nothing. It is just a space filler. Hence, there will
no output from this program.

Even the ‘pass’ block is used as a
space filler, eventually, all the

’pass’ blocks are replaced with
another code.

Output:
Note: As there is no print statement
hence there is no output

49

CEDURA © Copyrighted Content. All rights reserved

Short if-else Statement

In Python, the short if statement, also known as the ternary conditional operator, allows you to write
concise conditional expressions in a single line. Its syntax is value_if_true if condition else
value_if_false, which is both readable and compact compared to a full if-else block. This makes it ideal
for simple decisions where one value is assigned based on a condition. However, it is recommended to
avoid using it for complex logic, as it can become harder to read.

Syntax:

value_if_true if condition else value_if_false

We can use ‘short if’ in place
of a regular ‘if’ program. ‘Short

if’ will make the program
concise

PRACTICE 1

Problem Statement: Demonstrate the short if statement

Code Explanation: In this program, we have used the short if-else which would minimize
the code and allow us to complete the code in a single line. Below that is the alternate
regular or long code using the if-else condition.

Short if-else can be used for simple
single statement operations but not
for complex multi-line statements

under the ’if’ or ‘else’ block.

Fail

score 50

Pass score 35

score 50
score 35
“Pass”

“Fail”

value_if_true value_if_falseCondition

Equivalent if-else long code

** Please note that a few blocks cannot be joined together
 as short if is not a common learners’ practice. The
 intention is to teach the concept.

Output:

Pass

50

CEDURA © Copyrighted Content. All rights reserved

Multiple Conditions

In Python, handling multiple conditions is achieved using logical operators such as and, or, and not,
which allow you to combine or modify conditions within an if statement. The ‘and’ operator ensures
that all conditions must be true for the code block to execute, while the or operator executes the code
if at least one condition is true. The not operator reverses the truth value of a condition, making it
useful for negating expressions.

For example, if x > 5 and y < 10: check if both conditions are satisfied before proceeding. When
working with complex conditions, parentheses can be used to group expressions and clarify their
evaluation order, as not has the highest precedence, followed by and, and then or. This flexibility in
combining conditions allows developers to implement intricate decision-making logic in a concise and
readable manner.

Syntax:
if condition1 and condition2:
 # Code block to execute if both conditions are True

While using Multiple conditions,
the final or the resultant outcome

will decide the further execution of
the codeAND OR NOT

PRACTICE 1

Problem Statement: Demonstrate the multiple condition with logical AND.

num1 10

num2 20

5num1 30num2

“Both TRUE”

Here, combining two
conditions using logical AND

Will print “Both True” only when
both the conditions result in TRUE

Condition1 Condition 2 Condition1 AND Condition2
 TRUE TRUE TRUE
 FALSE TRUE FALSE
 TRUE TRUE FALSE
 FALSE FALSE FALSE

Code Explanation: In this program, while using logical AND, the resultant outcome of the
multiple conditions will be TRUE only when both conditions result in TRUE. If you observe
the above truth table, you will understand the resultant outcome for various outcomes of
the first and second conditions. In this case, the print will work only when the num1 is
greater than 5 and num2 is less than 30. Here, both the conditions satisfy hence the output
will print “Both TRUE”.

Output:

Both TRUE

51

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 2

Problem Statement: Demonstrate the multiple condition with logical OR.

num1 10

num2 40

5num1 30

“1 Condition TRUE”

Here, combining two
conditions using logical OR

Will print “1 Condition TRUE” even
when one of the conditions

results in TRUE

Condition1 Condition 2 Condition1 OR Condition2
 TRUE TRUE TRUE
 FALSE TRUE TRUE
 TRUE TRUE TRUE
 FALSE FALSE FALSE

Code Explanation: In this program, while using logical OR, the resultant outcome of the
multiple conditions will be TRUE even if one of both conditions results in TRUE. If you
observe the above truth table, you will understand the resultant outcome for various
outcomes of the first and second conditions. In this case, the print will work when either
the num1 is greater than 5 or num2 is less than 30. Here, as at least one condition is
satisfied (i.e. num1 is greater than 5) hence, the output will print “1 Condition TRUE”.

Multiple conditions need not be
limited to 2 conditions only. You

could any number of conditions and
join them with AND, OR, NOT

PRACTICE 3

Problem Statement: Demonstrate the usage of logical NOT.

num1 10

5num1

“Condition FALSE”

Code Explanation: In this program, we are using NOT that negative a condition. Here, the
code block under the ‘if’ condition will work then the condition results in FALSE. This is
rarely used, unless sure, as it confuses most of the users.

num2

Output:

1 Condition TRUE

Output:

Condition False

52

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we are using multiple logical blocks, i.e., AND, OR and
NOT, to build logic. Even though long, this kind of multi-conditions is possible in the real
world. Here we have 3 conditions - the first two conditions are joined by logical AND and the
last one (Negate condition) is joined to the first two using an OR logical block. In the Python
text coding we can represent this condition as:

if (x > 5 and y < 30) or not (z > 10):

PRACTICE 4

Problem Statement: Demonstrate the combining multiple conditions using logical and, or and not.

In Python text coding we will use
parentheses for the conditions for

clarity and precedence.

5num1 30 10

num1 10

num2 20

num3 5

“Condition TRUE “

Logical Operator Precedence: The highest
precedence goes to NOT followed by AND
and finally OR has the lowest precedence

num3num2

Output:

 Condition TRUE

53

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to check whether a given number is positive or not.

2. Build a Python Block Code to seek a number from the user and check whether a
given number is even or odd.

3. Build a Python Block Code to seek the Gender of the student (“Male” or
”Female”) and print 1 if the gender is male and 0 if the gender is female.

4. Build a Python Block Code to seek two numbers from the user and display the
bigger number.

5. Build a Python Block Code to seek two numbers from the user and display the
smaller number.

6. Build a Python Block Code to seek the marks and age of a student and check the
given eligibility condition: age should be less than 25 and marks should be
greater than 65. If the student meets both conditions, print ‘Eligible’.

7. Build a Python Block Code to check whether a person is eligible to drive or not.
(Condition: Age of 18 and above are eligible to drive)

8. Build a Python Block Code to check whether a given number is between 1 and 9

9. Build a Python Block Code to seek a password from the user and authenticate it.
(Tip: You decide on the password and check it against the user input)

10. Build a Python Block Code to check the age and display ”Child”, “Teenager” or
“Youth”. (Tip: age 1 to 12 - Child; 13 to 19 - Teenager; 20 and above - Youth)

54

CEDURA © Copyrighted Content. All rights reserved

Match-Case Blocks

Introduced in Python 3.10, the match-case statement is a powerful feature that allows for pattern
matching, providing a cleaner and more intuitive alternative to complex ‘if-elif’ chains. It works by
comparing a given value against one or more patterns, executing the corresponding code block when
a match is found. In the kit, you will find 3 blocks related to match-case, one being the ‘match’ block
and 2 ‘case’ blocks. The ‘case’ block comes in two sizes to match the position. Use them as per the
position of the case.

The syntax begins with the match keyword, followed by an expression to be compared. Within the
case blocks, specific patterns can be defined, such as literals, variable bindings, wildcards, or even
more complex structures like sequences and dictionaries. For example, in a match day statement, the
case "Monday": block can execute code specific to Monday, while the case _: (underscore) acts as a
wildcard for unmatched cases, similar to a default case in other languages.

Components:
1. match expression:

• The expression is evaluated and compared against each case pattern.
2. case pattern:

• Patterns can be values, variables, sequences, or more complex structures.
• Use | to specify multiple patterns (e.g., case "A" | "B":).

3. case _:
• A wildcard case that matches anything. It works like a default case.

4. if condition: (optional)
• Guards add an extra condition to a case for more refined matching.

Match Case (short) Case (extended)

Syntax:
match expression:
 case pattern1:
 # Code to execute if pattern1 matches
 case pattern2:
 # Code to execute if pattern2 matches
 case pattern3 if condition:
 # Code to execute if pattern3 matches and the condition is True
 case _:
 # Code to execute if no patterns match (default case)

55

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we are using a ‘match-case’ where there will be an
expression (‘choice’) that would be compared with all the patterns of the case blocks.
When the user inputs colour, we are storing in the ‘choice’ variable. This variable is used as
an expression in the ‘match’ block. When the input is ‘red’ the first case matches hence the
print function under it will be executed (prints “Stop!”). When the input is ‘yellow’, it
matches with the second case and the print function under it will be executed (prints “Get
Ready”). When the user input matches with none of the patterns (colours) mentioned in the
case blocks, the default case i.e. the one with the ‘_’ pattern will be executed (prints
“Unknown Colour”). The same come can be written using ‘If-elif’ blocks. However, the
match-case method will be simpler for such applications.

PRACTICE 1

Problem Statement: Build a Python Block Code to display traffic signal based on user input

choice “Enter a Colour”

choice

‘red’

“Stop!”

‘yellow’

“Get Ready!”

‘green’

“Go!”

_

“Unknown Colour”

User colour input

This is the expression that
will be evaluated to
compare with each case

Executed only when the
expression value will be ‘red’

(case ‘red’)

Executed only when the
expression value will be ‘yellow’

(case ‘yello’)

Executed when expression
matches with none of the case

patterns

choice

“Stop!”

“Unknown Colour”

choice

“Get Ready”

“Go!”

‘red’

‘yellow’

choice ‘green’

Alternate code for the above
‘match-case’ example using ‘if-

elif’ blocks. You could use
either of the method.

End (long) block

Output:

Enter a Colour: Orange

Unknown Colour

56

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code (using Match-Case) to seek input from a user (0 or 1)
and print the text (‘one’ or ‘two’) form of the input number. In case a user enter
any other number, then print ‘invalid input’

2. Build a Python Block Code (using Match-Case) to take input from the user (0 or 1)
and perform the addition of two variables if the input is 0 and subtraction if the
input is 1.

3. Build a Python Block Code (using Match-Case) to take input from the user (Big or
Small) and compare two variables, var1 (6) and var2 (5). If the input is Big, check
whether variable var1 is bigger than var2. If the input is small, check whether
variable var1 is smaller than var2.

57

CEDURA © Copyrighted Content. All rights reserved

Data Structures in Python

Data structures in Python are ways of organizing and storing data so that they can be accessed and
manipulated efficiently. hey provide a way to manage and work with data based on specific needs
and operations, such as searching, sorting, or accessing elements. They are essential for handling
complex data efficiently and are a core concept in programming. Python offers a rich set of built-in
data structures, which can be broadly categorized into the following:

• Built-in Data Structures
 These are the basic structures that come pre-defined in Python. List, Tuple, Set,

Dictionary and Strings belong to this group.

• User-defined Data Structures
 Python allows the creation of custom data structures to solve specific problems. In

this, we have Stack, Queue, Linked List, Tree, Graph and Hash Table

Choosing the right Data Structure depends on the Data Type (Homogeneous or Heterogeneous),
Operations (Searching, Sorting, Indexing, etc) and Performance requirements (Time and Space
complexity).

LIST TUPLE SET

Essential Concepts

Heterogeneous Data: This is the property to have values of different data types. Sequences help to
ensemble values of different data types together.

 var = [1, 4,7,9] → Homogeneous or Same data type values

 var = [1, ‘py’, 7.8] → Heterogeneous or Different data type values

Ordered: It is all about maintaining the sequence or a defined order which the items maintain while
creating a sequence. Few Sequences maintain the order and others are unordered, meaning they will
jumble the position of the values, once a sequence is created.

Iteration: It is the ability to go through all the items in a sequence. All sequences allow iterating through
their items.

Duplicates: Few sequences allow duplicate values and few do not. This is a feature we need to check before
using a sequence.

Indexing: Every item in a sequence in given a unique integer number to identify the item’s position in the
sequence. This is used to retrieve that particular item. The indexing always starts from 0.

Slicing: This is an extension of Indexing. Here we can select more than one item. Hence, we will provide the
‘start’ and ‘upto’ value. E.g. var =“Python”. In case you want ‘th’ characters we will use slicing var[2:4].

Dictionary

58

STRINGS

In Python, a string is a sequence of characters enclosed within single quotes ('), double quotes ("), or
triple quotes (''' or """). Each character is treated as an element in the string and can be indexed.
Strings are one of the most widely used data types and are immutable, meaning their content cannot
be changed after they are created. Strings can store letters, numbers, symbols, or even spaces and are
used extensively for handling and manipulating textual data. Python provides a variety of string
operations and methods, making it easy to process and transform text effectively.

Python offers powerful tools for working with strings, such as indexing, slicing, and built-in
methods. Strings support indexing, where the first character is at index 0, and slicing, allows
extraction of specific portions of the string. For example, var = “Python”, and var[1:4] extracts
the substring ‘yth'. Additionally, Python provides methods like .lower(), .upper(), .strip(),
.replace(), and .split() for transforming and analysing strings.

For this course we are not using any methods but understand how to index and slice a string.

Syntax:
 var_name = “PYTHON”

CEDURA © Copyrighted Content. All rights reserved

SEQUENCES:
Sequences are ordered collections of items that allow access to their elements through indexing. Common
sequence types include strings, lists, tuples, and ranges, each serving different purposes. Python’s
sequence types simplify handling collections of data with their intuitive syntax and built-in
functionality, forming the backbone of many applications.

• The sequence is an ordered set
• Used to ensemble a group of items
• Every item or element in the sequence is numbered which is called indexing
• We could refer to the elements or items in the sequence using their index number

P Y T H O N
0 1 2 3 4 5

var_name = “PYTHON”

Every item or element in the
sequence has a unique
number called index number

String Methods

• capitalize()

• upper()

• islower()

• isupper()

• count()

• len()

• index()

• find()

• lstrip()

• split()

• replace()

• concatenate()

• ….

Indexing - Numbering the elements in the sequence

Index Position - Used to refer to a particular character or a string

Positive Indexing & Negative Indexing:

P Y T H O N
0 1 2 3 4 5

-6 -5 -4 -3 -2 -1 Negative Indexing

Positive Indexing
var_name = “PYTHON”

59

CEDURA © Copyrighted Content. All rights reserved

1. Build a Python Block Code to create a LIST of student marks and print them.

2. Build a Python Block Code to create a LIST and print its data type.

3. Build a Python Block Code to create a TUPLE of student ages and print them.

4. Build a Python Block Code to create a SET of Employee Details and print them.

5. Build a Python Block Code to create a SET with duplicate items in it. What will be
the output when you print it?

6. Build a Python Block Code to create a DICTIONARY of Employee Details and print
it.

7. Build a Python Block Code to create a DICTIONARY using keys (Name, age) and
values (Akram, 10).

8. Build a Python Block Code to create a DICTIONARY of Employee Details and print
any one value.

9. Build a Python Block Code to create a nested list.

10. Write a Python Block code to create a list based on the given values and print the
3rd Item in the list. (Hint: Consider 10, 20.3, True, "Hello”, -56, 22.5 as values)

11. Write a Python Block code to create a list using the values 22, 45, 66, 77, 22,
"78.67", and 22. After creating find out whether a value 77 is in the list or not.

12. Write a Python Block code to assign a string “Sequence” to a variable and print
the 4th character and the characters “uen”, individually.

PRACTICE 2

Problem Statement: Build a Python Block Code to assign a string ‘AITinkr’ to a variable and index the

3rd character (index number 2).

Code Explanation: In this program, we are assigning a string “AITinkr” to a variable ‘var’. As
we are interested in the 3rd character, the index number would be 2. In this, the output will
be character ‘T’. Please note that indexing always starts with 0, unlike we humans count
from 1. Hence, be careful while indexing. Each character in the string is considered as an
individual element.

Posit ive I n dex in g

 var_name[2] → T

 var_name[0] → P

Negative I n dex in g

 var_name[- 3] → T

 var_name[- 2] → P

PRACTICE 1

Problem Statement: Build a Python Block Code to assign a string and print it

Code Explanation: In this program, we assign a string “Python” to a variable temp. Please
note that we always encapsulate a string within single(‘) or double (“) or triple (‘’’) quotes.
As the assignment is completed, we can print the content of the variable temp using a print
function.

var[2]

“AITinkr”var

Output:

T

temp

“Python”temp

Output:

Python

Index number 2 for 3rd
character in the string
(Count starts from 0 for
indexing)

60

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 3

Problem Statement: Build a Python Block Code to assign a string ‘AITinkr’ to a variable and slice

characters ‘Tin’ (index numbers 2, 3, and 4)

Code Explanation: In this program, we are assigning a string “AITinkr” to a variable ‘var’. As
we are interested in characters ‘Tin’ we must slice them indicating the starting (2) and upto
value (5). Please note that it is an ‘upto’ value hence, we will always consider one value
higher than the last item index number (in our case 5). This way we will get the output as
‘Tin’ as desired.

SLICING:

Slicing in Python is a powerful technique used to extract a portion of a sequence, such as a string, list,
tuple, or range. It allows you to access specific elements or a range of elements using the syntax
sequence [start:stop:step]. The start index specifies where the slice begins (inclusive), the stop
determines where it ends (exclusive), and the step defines the interval between elements. Slicing
provides flexibility in manipulating sequences, enabling tasks like reversing sequences, extracting
subsets, or skipping elements. If any parameter is omitted, Python uses default values: start=0,
stop=len(sequence), and step=1. Importantly, slicing does not modify the original sequence but
instead creates a new one, making it a safe and efficient way to work with data.

S yn ta x :
 va r_n a me [sta rt : e n d : ste p] Up to position (Not included)

v a r_n a me [1:3] → HE

 v a r_n a me [1:2] → H

 v a r_n a me [:3] → A HE

 v a r_n a me [1:] → HE A D

 v a r_n a me [:] → A HE A D

Positive Slicing

v a r_n a me [- 4 :- 2] → HE

 v a r_n a me [- 4 :- 3] → H

 v a r_n a me [: - 2] → A HE

 v a r_n a me [- 4:] → HE A D

 v a r_n a me [:] → A HE A D

Negative Slicing

var

var[2:5]

“AITinkr”

Output:

Tin

61

CEDURA © Copyrighted Content. All rights reserved

List Block

A list in Python is a built-in data structure that represents an ordered, mutable collection of elements.
Lists can store items of various data types, such as integers, floats, strings, or even other lists, making
them highly versatile for handling diverse datasets. They are defined using square brackets [], with
elements separated by commas. Lists are indexed, meaning you can access individual elements using
their position (starting from 0).

Properties:
1. Ordered
2. Mutable
3. Heterogeneous
4. Dynamic
5. Indexable

Syntax:
list_name = [element1, element2, element3, ...]

OR
 list_name = list(iterable) # constructor method

6. Allows Duplicates
7. Supports Nesting
8. Extensive Built-in Methods
9. Symbol - []

PRACTICE 1

Problem Statement: Write a Python Block Code to create a list of integers.

Code Explanation: In this program, we have a series of integer elements which are used to
create a list and assigned to the variable ‘lst1’. A List is created by simply sequencing the
items and assigning them to an object. As we are using square brackets ([]), Python will
create a list with the given elements.

lst1

lst1

1, 5, 9, 4, 23

PRACTICE 2

Problem Statement: Write a Python Block Code to create a list of Strings.

lst2

lst2

‘A’, ‘CDF’, ‘H’

Integer elements

String & character elements

62

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 3

Problem Statement: Build a Python Block Code to create a list of mixes data types (Heterogeneous).

lst3

lst3

4, ‘S’, 5.6, TRUE

Elements containing different
data types

Code Explanation: In this program, we have a series of string elements which are used to
create a list and assigned to the variable ‘lst2’. A list is created by simply sequencing the
items and assigning them to an object. As we are using square brackets ([]) , Python will
create a list with the given elements.

PRACTICE 4

Problem Statement: Build a Python Block Code to create a list and print the third item in it.

Code Explanation: In this program, we have created a list with items. As per the problem
statement we are expected to print the 3rd item i.e. ‘TRUE’. We have learning that items in a
sequence are indexed with a unique integer value starting with zero. Hence the index
number of the item ‘TRUE’ will be ‘2’. To access the item with index number 2 we will use
the square brackets and indicate the desired index number. When we code lst_new[2], it
will print the item ‘TRUE’ as its index position is 2.

lst_new

lst_new[2]

4, ‘S’, 5.6, TRUE

List inside a list - Nested

Code Explanation: In this program, we have a series of mixed data type elements (Integer,
String, Float, and Boolean) that are used to create a list and assigned to the variable ‘lst3’. A
list is created by simply sequencing the items and assigning them to an object. As we are
using square brackets ([]) , Python will create a list with the given elements.

Indexing an item

63

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 5

Problem Statement: Build a Python Block Code to create a nested list.

Code Explanation: In this program, we have two lists nested inside the main list or outer
list. We have assigned this to an object ‘lst_nest’. This is how we create nested lists. Each
list inside the outer list is indexed so that we can access them individually. Suppose, you
are interested in list item [5,8] you will index it directly as we do for any item in a sequence
(lst_nest[1]). Nested lists are widely used when each element is made of another list.

lst_nest

lst_nest

[2, 6], [5, 8]

List inside a list - Nested

Tuple Block

A tuple in Python is a built-in data structure that represents an ordered, immutable collection of
elements. Similar to lists, tuples can store elements of different data types, such as integers, strings,
floats, or even other tuples. They are defined using parentheses () with elements separated by
commas. Since tuples are immutable, their elements cannot be modified, added, or removed after
they are created, making them ideal for storing fixed collections of data.

Properties:
1. Ordered
2. Immutable
3. Heterogeneous
4. Iterable
5. Indexable

Syntax:
 tuple_name = (element1, element2, element3, ...)

OR
 tuple_name = tuple(iterable) # constructor method

6. Allows Duplicates
7. Supports Nesting
8. Hashable
9. Symbol - ()

64

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to create a tuple with multiple elements

Code Explanation: In this program, we have elements of different data types used to build
a tuple, tup1. We used mixed data type elements (Integer, String, Float, and Boolean). A
tuple is created by simply sequencing the items and assigning them to an object. As we are
using parenthesis (‘()’), Python will create a tuple with the given elements.

tup1

tup1

Mixed data type elements

3, 8, ‘SGH’, 4.3

PRACTICE 3

Problem Statement: Build a Python Block Code to create a nested tuple

Code Explanation: In this program, we have two tuples nested inside the main tuple or
outer tuple. This is how we create a nested tuple. Each tuple inside the outer tuple is
indexed so that we can access them individually. Nested tuples are widely used when each
element is made of another tuple.

tup2

tup2

Nested tuples - Tuples
inside a Tuple

(5,3), (9,1)

PRACTICE 2

Problem Statement: Build a Python Block Code to create a tuple and index 2nd item (index number 1)

Code Explanation: In this program, we have elements of different data types used to build
a tuple, tup1. To index 2nd item (index number 1), we have to use the code tup1[1], which
will index the item ‘8’ and print it. This is the same as an indexing list or any other sequence.
Always use square brackets to indicate the index number of the item.

tup1

tup1

Mixed data type elements

3, 8, ‘SGH’, 4.3

65

Set Block

A set in Python is a built-in data structure that represents an unordered collection of unique elements.
Unlike lists and tuples, sets do not allow duplicate elements and are unindexed, meaning the order of
elements is not guaranteed. Sets are mutable, so you can add or remove elements, but they can only
contain immutable (hashable) objects like numbers, strings, or tuples.

Properties:
1. Unordered
2. Mutable
3. Unindexed
4. Iterable
5. Supports Set Operations

Syntax:
 set_name = {element1, element2, element3, ...}

OR
 set_name = set(iterable) # constructor method

6. No Duplicates
7. Dynamic Size
8. Unique Elements
9. Symbol - { }

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to create a set with multiple elements

Code Explanation: In this program, we have elements of different data types used to build
a set, set1. We used mixed data type elements (Integer, String, Float, and Boolean). A set is
created by simply sequencing the items and assigning them to an object. As we are using
braces (‘{ }’), Python will create a set with the given elements.

set1

set1

Mixed data type elements

1, “thu”, 5.16

Learning TIP: All the sequences behave as per their properties i.e. ordered/unordered,
mutable/immutable, duplicate items, etc. Hence few methods apply to a particular data structure,
whereas the same may not apply to another type of data structure. Recommend you learn all the
methods of a LIST and then differentiate which methods could be applied or not applied for others

66

CEDURA © Copyrighted Content. All rights reserved

Dictionary Block

A dictionary in Python is a built-in data structure that stores data in the form of key-value pairs. It is a
versatile and efficient way to organise and retrieve data based on unique keys rather than positional
indices, as with lists or tuples. It is a collection of key-value pairs where the value can be any python
object, and the keys are used to index values and keys can be any immutable data type; strings and
numbers. Dictionaries are defined using curly braces {} and allow for quick lookups, additions, and
updates.

Properties:
1. Unique Key-value Pair Structure
2. Unique Keys
3. Immutable Keys
4. Heterogeneous Values
5. Ordered

Syntax:
dictionary_name = {
 key1: value1,
 key2: value2,
 key3: value3,
 ... }

6. Mutable
7. No Duplicate Keys
8. Dynamic Size
9. Supports Nesting
10. Symbol - { }

PRACTICE 1

Problem Statement: Build a Python Block Code to create a tuple with multiple elements

Code Explanation: In this program, we are creating a single key:value pair dictionary. Note
that every element in the dictionary is a key:value pair. We can index the value using the key
of the element. We could use multiple key:value pairs by separating them with comma (,).
Dictionaries are widely used data structure in python.

my_dict

my_dict

Single Key-Value pair

“name” “Jack”

Every Key:Value Pair is an Item
or an element in this data

structure. These are indexed
using keys

67

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 2

Problem Statement: Build a Python Block Code to create a tuple with multiple elements

Code Explanation: In this program, we have created a dictionary with multiple key:value
pairs (name and age). We used a comma separator to use multiple key:value pairs. After
creating the dictionary, we are trying to print the age value by indexing its key (“age”). This is
the way we can use the key to index in a dictionary. The dictionary provides efficiency for
storing and retrieving data based on unique keys.

my_dict

my_dict[“age”]

Multiple Key-Value Pairs

“name” “Jack” age 25

Indexing ‘age’ key - Output
will be 25

Membership Operators

Membership operators in Python are used to check whether a specific value or variable is present in a
sequence (e.g., string, list, tuple, set, dictionary). The result of the operation is a Boolean value (True
or False). Python provides two membership operators: in and not in. The in operator returns True if
the value is present in the sequence, while not in returns True if the value is absent.

Syntax:
value in sequence

value not in sequence

IN NOT IN

PRACTICE 1

Problem Statement: Build a Python Block Code to check the existence of a value in a sequence.

my_list 1, 5, 9, 4, 23

9 my_list

68

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we are creating a list and assigning it to an object
‘my_list’. In the next statement, we are checking whether the value ‘9’ is available in the
above list or not using the membership operator ‘in’. As the value ‘9’ exists in the sequence
the output will result in TRUE. The same method could be used for any sequence.

PRACTICE 2

Problem Statement: Build a Python Block Code to check whether a particular character exists in a

string.

my_str

‘h’ my_str

“Python”

Code Explanation: In this program, we are assigning a string “Python” to a variable
‘my_str’. In the next statement, we are checking whether the character ‘h’ is available in the
string or not using the ’in’ membership operator. As the character ‘h’ is available in the
string, the output would result in TRUE.

PRACTICE 3

Problem Statement: Build a Python Block Code to demonstrate usage of membership operator on a

dictionary.

Code Explanation: In this program, we have created a multiple key:value paired dictionary.
In the next statement, we are checking whether the key “name” is available in the
dictionary and it would result in TRUE. However, when we check whether the value “Jack” is
available, it results in FALSE. We can check for key membership but not the value
membership.

my_dict

Multiple Key-Value Pairs

“name” “Jack” age 25

my_dict“name”

my_dict“Jack”

Results TRUE

Results FALSE

Note: We can use the ‘not in’ operator the same way, however, it is the
negation of the ‘in’ operator 69

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to create a LIST of student marks and print them.

2. Build a Python Block Code to create a LIST and print its data type.

3. Build a Python Block Code to create a TUPLE of student ages and print them.

4. Build a Python Block Code to create a SET of Employee Details and print them.

5. Build a Python Block Code to create a SET with duplicate items in it. What will be
the output when you print it?

6. Build a Python Block Code to create a DICTIONARY of Employee Details and print
it.

7. Build a Python Block Code to create a DICTIONARY using keys (Name, age) and
values (Akram, 10).

8. Build a Python Block Code to create a DICTIONARY of Employee Details and print
any one value.

9. Build a Python Block Code to create a nested list.

10. Write a Python Block code to create a list based on the given values and print the
3rd Item in the list. (Hint: Consider 10, 20.3, True, "Hello”, -56, 22.5 as values)

11. Write a Python Block code to create a list using the values 22, 45, 66, 77, 22,
"78.67", and 22. After creating find out whether a value 77 is in the list or not.

12. Write a Python Block code to assign a string “Sequence” to a variable and print
the 4th character and the characters “uen”, individually.

70

CEDURA © Copyrighted Content. All rights reserved

Range in Python

The range() function in Python is a versatile tool used to generate sequences of numbers, often in
combination with loops. You can generate a sequence of numbers without depending on a List or
Tuple. For example, you can generate 1,2,3,4,5 a sequence of numbers using range and convert them
into a list to get a sequence, instantly.

The basic syntax is range(start, stop, step), where start is the beginning of the sequence (default is 0),
stop is the endpoint (exclusive), and step specifies the increment (default is 1). If two values are given
in the parameters, it will consider them as start and stop values, and step as default 1. If only one
value is provided as a parameter it will consider it as the stop value, and start as default ‘0’, step as
default ‘1’. If you want a decreasing sequence, you can use a negative step, such as range(5, 0, -1)
which produces 5, 4, 3, 2, 1. This flexibility makes the range() function essential for repetitive tasks
and algorithmic problem-solving in Python.

It is commonly employed in for loops to iterate over a specific range of values without manually
specifying each number. One of the key benefits of the range() function is its memory efficiency.
Instead of creating a list of numbers outright, range() generates numbers on demand, making it
suitable for handling large sequences without consuming excessive memory. It works seamlessly with
loops, enabling concise and readable code for iterating over numerical ranges.

We use the list() function along with the range() function in Python to explicitly convert the range
object into a list. The range() function returns a range object, which is an iterable that generates
numbers on demand, but not an actual list. The list() function creates a list from this range object,
allowing us to view or manipulate the generated sequence directly.

Parameters:
1. start (optional): The starting value of the sequence. The default value is 0.
2. stop: The endpoint of the sequence. The ‘up to’ value. Must for a range.
3. step (optional): The difference between each number generated in the sequence.

The default value is 1. Can be negative too to generate a sequence in reverse
order.

Syntax:
 range(start, stop, step)

Example:
 list(range(1,5,1)) → Output: [1,2,3,4] ’1’ being start | ‘5’ being stop (up to) | ‘1’ being step

 list(range(1,5,2)) → Output: [1,3] ’1’ being start | ‘5’ being stop (up to) | ‘2’ being step

 list(range(5,1)) → Output: [0,1,2,3,4] No Start value hence default 0

 list(range(1, 5)) → Output: [1,2,3,4] No Step value hence default 1

 list(range(5)) → Output: [0,1,2,3,4] No Start or Step hence ‘0’ and ‘1’, respectively

Range

The ‘range’ can be used to
generate numerical

sequences only.

Range - Parameters

start stop step

71

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to demonstrate the usage of the range() function

Code Explanation: In this program, we are generating a sequence of numbers with a ‘start’
value of 1, a ‘stop’ value of 5 and a ’step’ value of 1. This will generate a range object which
is not an actual list. Hence, we are using the ‘list’ function in front of it to create a list from
this range object. This allows us to iterate and manipulate the generated sequence directly.
We are storing the list in the variable ‘my_seq’. In the next line, we are printing the list. The
output will be [1,2,3,4]. This is how you can generate a sequence of numbers using the
range function in python.

my_seq

my_seq

1 5 1

PRACTICE 2

Problem Statement: Build a Python Block Code to generate a sequence of even numbers from 1 to 10.

Code Explanation: In this program, we are expected to generate even numbers from 1 to
10. The output would be 2,4,6,8. Here the starting value is 2 (which is the smallest even
number possible) and the ending value is 8 (which is the largest even number possible
before 10) and the difference between the numbers is 2. Hence, we will consider 2 as the
‘start’ parameter, 10 as the ’stop’ parameter and finally 2 as the ‘step’ as we want every
alternate number. After that, we use the tuple() function to convert the range object into a
tuple. The same method could be used to generate odd numbers too.

even_seq

even_seq

2 10 2

To generate a bunch of even
numbers, start with an even
number and keep adding 2

start stop step

start stop step

Output:

(2, 4, 6, 8)

Output:

[1, 2, 3,4]

72

CEDURA © Copyrighted Content. All rights reserved

TOPIC ASSIGNMENT

1. Build a Python Block Code to print a list of numbers [1,2,3,4,5], using the Range
function.

2. Build a Python Block Code to print a tuple of numbers (7,8,9,10), using the Range
function.

3. Build a Python Block Code to print even numbers from 51 to 60, using the Range
function.

4. Build a Python Block Code to print three values only between 1 to 10, using the
Range function. (Hint: Should print 1, 4, 7)

PRACTICE 3

Problem Statement: Build a Python Block Code to print a list of odd numbers from 1 to 10.

Code Explanation: In this program, we are expected to print a list of odd numbers from 1 to
10. As 1 is an odd number we can consider it as our ‘start’ value. As the target is up to 10,
we will consider the ‘stop’ value as 10. However, as we need odd numbers the step size
should be 2. This way we are adding 2 to the start value 1 so that the next number will be 3
and then again add 2 to the result so that the next number will be 5 and so on. This is an
important concept to learn to use the ‘step’ value to have the desired output. This way the
output will be 1,3,5,7,9. Mind that it will never cross the ‘stop’ value or include it in the
output.

odd_num

odd_num

1 10 2

start stop step

Output:

[1, 3, 5, 7, 9]

73

CEDURA © Copyrighted Content. All rights reserved

Control Loops in Python

Control loops are fundamental in Python programming as they enable repetitive execution of code,
making tasks more efficient and reducing redundancy. By automating repetitive operations, loops
eliminate the need for manual intervention, saving time and effort. Control loops also enhance code
readability and maintainability by replacing lengthy, repetitive code blocks with concise looping
constructs. They play a pivotal role in implementing algorithms, enabling tasks like searching, sorting,
and iterative computations. Python supports two main types of loops: for loops and while loops.

A for loop iterates over a sequence, such as a list, tuple, string, or range, allowing the programmer to
process each element sequentially. For example, for i in range(5): iterates through numbers from 0 to
4. On the other hand, a while loop repeatedly executes a block of code as long as its condition
evaluates to True, making it ideal for scenarios where the number of iterations is not predetermined.
Python also provides loop control statements like break (to exit a loop prematurely), continue (to
skip the current iteration), and pass (to create a placeholder for future code). These loops are
invaluable for automating repetitive tasks, processing data structures, or implementing algorithms
efficiently.

While Control LoopFor Control Loop

For Loop Block

Components:
1. variable: Represent each element in the sequence during the iteration.
2. sequence: The collection or iterable object to iterate over (list, range, tuple, string)
3. Indentation: The block of code under the for loop must be indented.

The for loop in Python is a powerful and versatile control structure used to iterate over a sequence,
such as a list, tuple, string, dictionary, or range, and execute a block of code for each element. It is
especially useful for automating repetitive tasks, processing data, or iterating through collections
efficiently. Unlike traditional loops in other programming languages, Python’s for loop directly
accesses elements of a sequence rather than relying on index counters.

For example, for items in [1, 2, 3]: iterates through the list and processes each element. Python also
allows the use of else with for loops, executing the else block when the loop completes naturally
without encountering a break. The for loop’s simplicity and readability make it an essential construct
for tasks such as traversing arrays, manipulating strings, or implementing algorithms efficiently.

Syntax:
for variable in sequence:
 # Code block to execute for each element in the sequence

One Iteration is the process of
executing a block of code

once. In a loop, there can be
more than one iteration

74

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to demonstrate iteration through a sequence using for

loop.

Code Explanation: In this program, we have created a list with a bunch of strings. Using
‘for’ loop we intend to iterate through the sequence. As we are aware, ‘for’ loop fetches one
by one item from the list and loads into the variable ‘var’. Once an item is loaded into the
variable, the control would go under the ‘for’ loop and execute the statements. Here, we
have only one statement which is to print the content of the variable ‘var’. Once it finishes
printing the control goes back to the ‘for’ loop. Now, the second item will be loaded into the
‘var’ variable and the steps will repeat again. This repetition or iteration continues until the
last item in the sequence is executed. This is how the for loop iterates through all the items
in the sequence.

my_list “AB”, “BC”, “CD”

Sequence

var my_list

var

The number of iterations of a
‘for’ loop depends on the

number of items in the
sequence

PRACTICE 2

Problem Statement: Build a Python Block Code to demonstrate iteration over a String.

String / Sequence

char “Python

char

Output:
P
y
t
h
o
n

Code Explanation: In this program, we are iterating over a string,
which is a sequence. Hence, the for loop will go through one
character at a time and print one character at a time. We can observe
this in the output.

Output:

AB
BC
CD

75

CEDURA © Copyrighted Content. All rights reserved 76

PRACTICE 3

Problem Statement: Build a Python Block Code to print the 4th table up to 5.

var 1,2,3,4,5

table var

Output:
4
8
12
16
20

Code Explanation: In this program, we have considered the variable ‘table’
as 4. Under that, we have a for loop which will iterate through the sequence
1,2,3,4,5. For every iteration of the for loop, we multiply the table value with
the item in the sequence. This way, we are generating output, which is a 4th
table. Once the for loop iterates through all the items, it will terminate
automatically.

table 4

PRACTICE 4

Problem Statement: Build a Python Block Code to print the 4th table up to 5 using the range function.

var

table var

Output:
4
8
12
16
20

Code Explanation: In this program, we have considered the variable ‘table’
as 4. Under that, we have a for loop with a range function. The range function
will generate a sequence of numbers 1 to 5 (start and stop) with 1 as the step
size. Now, the for loop will iterate through the sequence 1,2,3,4,5. For every
iteration of the for loop, we multiply the table value with the item in the
sequence. This way, we are generating output, which is a 4th table. Once the
for loop iterates through all the items, it will terminate automatically.

table 4

1 6 1

start stop step

Range function to
generated sequence of

numbers from 1 to 5

CEDURA © Copyrighted Content. All rights reserved 77

Nested for Loop

A nested for loop in Python is a loop inside another loop, where the outer loop controls the
number of times the inner loop executes. The inner loop runs completely for each iteration of the
outer loop, making it useful for handling multi-dimensional data structures like matrices, nested
lists, and tables. It is commonly used in pattern printing, matrix operations, sorting algorithms,
and simulations.

Syntax:
for outer_variable in outer_sequence: : # Outer loop

 for inner_variable in inner_sequence: : # Inner loop
 # Inner loop body

How it works:
1. The outer loop runs as long as there are items to iterate.
2. Inside the outer loop, the inner loop executes repeatedly as long it has items to

iterate.
3. After the inner loop completes iterating through all its items, the control will go

back to the outer loop. Now the outer loop iterates through the next item.
4. This way, for every item of the outer loop, the inner loop runs completely, i.e. it

iterates through all its items.

PRACTICE 1

Problem Statement: Build a Python Block Code to demonstrate nested for loop.

var_out “A”, “B”, “C”

var_in 1, 2, 3

var_out var_in

Output:
A 1
A 2
A 3

B 1
B 2
B 3

C 1
C 2
C 3

Outer for loop with a sequence

Repeats until the inner loop
completes iterations

Printing a blank line

Code Explanation: In this program, we have two ‘for’ loops - Outer and
inner. For every outer loop iteration, the inner loop will complete all the
iterations. Hence, the outer loop in its first iteration loads the value “A” into
the variable var_out. Then, it would go under the for loop to encounter
another for loop (inner). Here, this for loop is iterating over the numbers. For
every iteration of the outer loop the inner loop with iterate through all its
items. Hence, we will get A1, A2, and A3. After this, the inner for loop will
terminate and print a blank line. Now, the control will go back to the outer for
loop, where it iterates through the next item, i.e. “B”. Again for “B” the inner
for loop will run through all the items in the sequence. This way, we get B1,
B2, and B3 in the output. After this, the process again repeats until the outer
loop iterates through all the items.

Inner for loop with a sequence

CEDURA © Copyrighted Content. All rights reserved 78

PRACTICE 1

Problem Statement: Build a Python Block Code to print the 4th and 5th tables up to 3.

var_out 4,5

var_in 1, 2, 3

var_out var_in

Output:
4
8
12

5
10
15

Outer for loop with a sequence

Repeats until the inner loop
completes iterations

Printing a blank line

Code Explanation: In this program, we have two ‘for’ loops - Outer and
inner. For every outer loop iteration, the inner loop will complete all the
iterations. Hence, first, the outer loop will consider 4 into the variable
‘var_out’. Then it enters under the outer for loop where there is another for
loop (inner). The inner for loop will iterate through all the items in the
sequence i.e. 1,2,3 and load the items one by one into the variable ‘var_out’.
Under the inner for loop, we have an arithmetic operation to multiply var_out
and var_in. Once the inner loop is done with iterating through its sequence,
We are printing a blank space using a print block. After this, the control will
go back to the outer loop where it iterates to the next item in the sequence.
This way we will get 4th and 5th tables.

Inner for loop with a sequence

TOPIC ASSIGNMENT

1. Build a Python Block Code to create a list of numbers and print them individually
using the for loop.

2. Build a Python Block Code to demonstrate iteration over the string “Hello” using
the for loop.

3. Build a Python Block Code to demonstrate iteration through the given sequence
(45, ‘Py”, -5).

4. Build a Python Block Code to print 1 to 5 numbers using the Range function and
For loop.

5. Build a Python Block Code to print 3 tables up to 5 using the for flop.

CEDURA © Copyrighted Content. All rights reserved

while Loop Block

Components:
1. condition: A Boolean expression that is evaluated before each iteration. If the

condition is TRUE, the loop executes. If it results in FALSE, the loop terminates
2. code block: The indented block of code under the while statement that is

repeatedly executed.

The while loop in Python is a control structure that allows repetitive execution of a block of code as
long as a specified condition evaluates to True. It is particularly useful when the number of iterations is
not predetermined and depends on dynamic conditions, such as user input or real-time data. For
example, while count < 10: repeatedly executes the code block until the condition count < 10 becomes
False. Proper care must be taken to ensure the condition eventually becomes False to avoid infinite
loops. With its flexibility and simplicity, the while loop is ideal for scenarios like waiting for a specific
event, real-time monitoring, or condition-based tasks.

We can understand the functioning of a while loop through 4 essential steps for proper functioning.

Syntax:
 while condition:
 # Code block to execute as long as the condition is True

Example:

 count = 0

 while count < 5:

 print(count)

 count = count + 1

STEP 1: Initialization

STEP 2: Condition

STEP 3: Block of Code for repeated execution

STEP 4: update (increment / decrement)

PRACTICE 1

Problem Statement: Build a Python Block Code to print ‘Jump” for 5 times

count

“Jump”

0

count 05

count count 1

STEP 1: Initialization

STEP 2: Condition

STEP 3: Block of Code for repeated execution

STEP 4: update (increment / decrement)

79

CEDURA © Copyrighted Content. All rights reserved

Code Explanation: In this program, we are using a ‘while’ loop to print a statement ‘Jump’ 5
times. From this, we can understand that the condition is 5. Following the 4 steps in writing
a while loop, STEP1: initialize a counter ‘count’ with 0, STEP2: check whether the ‘count’ is
less than 5, STEP3: execute the block of code which is printing ‘Jump’ text in this case,
STEP4: for every iteration increase the ’count’ variable by 1. This way, the ‘while’ loop will
repeat the execution of a block of code 5 times (until the condition is TRUE).

Follow the 4 steps and check
them thoroughly to avoid an

infinite loop or non-execution
of the while loop.

PRACTICE 2

Problem Statement: Build a Python Block Code to identify EVEN and ODD numbers from 1 to 10

count 1

count

count count 1

010

count 2 0

count

STEP 1: Initialization

STEP 2: Condition

STEP 3:
Block of Code

STEP 4: Increment

Code Explanation: In this program, we have two parts to this code - a while loop to repeat a block of
code 10 times, incrementing the count for every iteration; and an ‘if’ block of code to check whether
the count value is an EVEN number or not, for iteration. Meaning, we are starting the count value with
1, which satisfies the condition in the ‘while’ loop.

Hence, the control will go under the ‘while’ where it encounters a ‘if’ statement. This would check
whether the value in the ‘count’ is exactly divisible by 2. If any number is exactly divisible by 2 without
leaving a remainder, then it is an EVEN number. To check them, we are using a mod (%) operator.
Whenever a number is exactly divisible by 2 then the if condition will result in TRUE, allowing the
control to go under the ‘if’ block and print the count.

This means the current count value is an EVEN number. In case the value in the count is not exactly
divisible by 2 then it will not be printed. After that, we increment the count value by 1 and the loop
continues. Hence, by the end of the ‘while’ loop, we will have all the EVEN numbers printed.

Output:

Jump
Jump
Jump
Jump
Jump

Output:

2
4
6
8
10

80

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 3

Problem Statement: Build a Python Block Code to print 3 tables up to 5.

table 3

mul

mul mul 1

0
5

table

Assigning table value

Initializing multiplier (‘mul’)

Printing the result (table * mul)

Code Explanation: In this program, we are using a ‘while’ loop to print the 3 tables
up to 5. For this, we have initialized the ‘table’ and ‘mul’ variables with 3 and 1,
respectively. The ‘table’ variable will stay constant i.e. 3, whereas the ‘mul’ variable
will be incremented for every iteration until it reaches value 5. This way we will be
able to multiply the ‘table’ variable with the ‘mul’ variable in every iteration to get a
table output. If you look at the code the ‘while’ loop repeats the block of code 5
times until the condition is TRUE. Once the ‘mul’ value crosses 5, the condition fails
and the loop will be terminated.

mul 1 Repeating the table for 5 times

mul

Incrementing ‘mul’
for every iteration

Output:
3
6
9
12
15

Nested while Loop

A nested while loop in Python refers to a while loop inside another while loop. The inner loop executes
completely for each iteration of the outer loop. This structure is useful for tasks that require multiple
levels of looping, such as working with multidimensional data, implementing algorithms with layered
iterations, or creating patterns.

Syntax:
while condition1: # Outer loop
 # Code block for the outer loop
 while condition2: # Inner loop
 # Code block for the inner loop

How it works:
1. The outer loop runs as long as the condition1 is TRUE
2. Inside the outer loop, the inner loop executes repeatedly as long as condition2 is

TRUE
3. After the inner loop finishes, the outer loop continues with its next iteration.

81

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to print 7 and 8 tables up to 5, one after another

table 7

mul 1

mul

mul mul 1

0
5

table mul

table 09

table table 1

mul 1

Initializing table variable (starting at 7)

Initializing mul variable (starting at 1)

Outer Loop: Condition 1

Inner Loop: Condition 2

Printing the result (multiplication)

Incrementing
‘mul’

Incrementing
‘table’ after the
inner loop is
completed.

Resetting
‘mul’
variable to 1

Code Explanation: In this program, we intend to print 7 and 8 tables up to 5 each.
This calls for a nested ‘while’ loop as we need the first ‘while’ loop to iterate through
the tables (7 and 8) and the second ‘while’ loop to iterate through the multiplier (1 to
5). So, the first ’while’ loop’s condition (outer loop), i.e. condition 1 will check
whether the table value is less than 9 so that it can repeat the block or code. The
second ‘while’ loop’s condition (inner loop) will check whether the multiplier
reached value 5 or not. Both the loops continue to iterate until their respective
conditions result in TRUE. However, you should note that for every single
iteration of the outer loop, the inner loop will iterate 5 times (condition). This is
how for every table we get output up to value 5.

Output:
7
14
21
28
35

8
16
24
32
40

Printing a blank line

82

CEDURA © Copyrighted Content. All rights reserved

Break Block

Syntax:
 if condition:
 break

The break statement in Python is a control flow tool used to exit a loop prematurely when a specific
condition is met. It is typically employed within ‘for’ or ‘while’ loops to interrupt their execution before
they complete their normal iteration. When the break statement is encountered, the program
immediately exits/terminates the loop. Even the code after the break statement but inside the loop
will not be executed.

This is particularly useful for situations where continuing the loop is unnecessary after an event or a
value occurs. For example, in a loop iterating through numbers, a break can stop the loop as soon as
the desired number is found. It helps in optimizing performance by avoiding unnecessary iterations,
making programs more efficient and easier to manage. However, care must be taken to ensure that
break is used appropriately to avoid unexpected behaviour or incomplete tasks within the loop.

A Break Statement is always
used inside a conditional if

statement

PRACTICE 1

Problem Statement: Build a Python Block Code to demonstrate the BREAK statement using a for loop.

Code Explanation: Recap the ‘for’ loop practice problem statement where we are expected to iterate
through all the items in the sequence and print them. Here, we are using the same block code
however, we introduced a ‘break’ statement under an ‘if’ statement. When the code runs, the first item
is loaded into the ‘var’ variable. After that, we are checking whether the content in the ‘var’ is ‘BC’? As
the ‘if’ condition results in FALSE, it will not go under the ‘if’ block but to the next executable statement
in the loop, i.e. the printing of the variable. In the second iteration, BC will be loaded into the ‘var’.
When the control reaches the ‘if’ block, the condition will result in TRUE as the content in ‘var’
matches with “BC”. Hence, the control will go under the ‘if’ block and execute the ‘break’ statement.
Once the ’break’ statement is executed, the entire ‘for’ loop will be terminated prematurely (no further
iterations or executing of the code blocks under the ‘if’). Hence, you will find only a single-item output.
This is how a ’break’ statement is used (always under an ‘if’ conditional block) to terminate the loop
prematurely. Note that blocks under the ‘if’ condition (here, the print block) will not be executed even
for the current iteration, as the loop terminates at once when it executes a break statement.

Output:
AB

my_list “AB”, “BC”, “CD”

Sequence

var my_list

var

var “BC”

83

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 2

Problem Statement: Build a Python Block Code to demonstrate the BREAK statement using while loop.

Code Explanation: Recap the ‘while’ loop practice problem statement where we are expected to print
‘Jump’ 5 times. Here, we are using the same block code however, we introduced a ‘break’ statement
under an ‘if’ statement. When the code runs, it will check, for each iteration, whether the count
reached ‘3’ or not. In the first iteration, the ‘count value is ‘0’ hence, the ‘if’ condition will result in
FALSE, so it will not go under the ‘fi’ statement and execute the break statement. However, the
statements below the ‘if’ block will execute (i.e. print and the increment) to complete the first iteration.
In the second iteration, again, it checks whether the ‘count’ value is ‘3’. As the ‘if’ condition results in
FALSE, it will not proceed like the first iteration. However, when the ‘count’ value reaches 3, then the
‘if’ conditional statement will result in TRUE and the control will go under the ‘if’ and execute the
‘break’ statement. Once the ’break’ statement is executed the entire ‘while’ loop will be terminated
prematurely (no further iterations or executing of the code blocks under the ‘if’).

count

“Jump”

0

count 05

count count 1

count 3

Output:
Jump
Jump
Jump
Jump

Continue Block

Syntax:
 if condition:
 continue

The continue statement in Python is used to skip the current iteration of a loop and move to the next
iteration, without exiting the loop entirely. The ‘continue’ statement, like the ‘break’ statement, is
always used under a conditional ‘if’ block. When the continue statement is encountered, even the
remaining code in the current iteration is ignored, and the loop proceeds with the next cycle. You
should be mindful of this and should not place essential code such as count increment after the
continue statement. This feature is particularly useful for filtering data or managing special conditions
within loops, making the code more concise and efficient. However, like the break statement, it should
be used thoughtfully to avoid unintended behaviour or skipped tasks.

When the ‘continue’ statement
is executed, the code under it

will not be executed and control
will go to the start of the loop

84

CEDURA © Copyrighted Content. All rights reserved

PRACTICE 1

Problem Statement: Build a Python Block Code to demonstrate the CONTINUE statement using a for

loop.

Code Explanation: In this code we are using a ‘continue’ block under the ‘if’ conditional statement.
For every iteration of the ‘for’ loop, the content of the variable ‘var’ is checked against the value“BC”.
In the first iteration, the value in the ‘var’ is ‘AB’ hence, the ‘if’ condition will result in FALSE and the
print function is executed. However, in the second iteration, the value in the ‘var’ variable will be ’BC’.
In this case, the ‘if’ condition will result in TRUE and the control will go under the ‘if’ statement and
execute the ‘continue’ statement. Once the ‘continue’ statement is executed the loop skips the
current iteration, including the execution of the print function that is after the ‘continue’ statement.
Hence, BC will not be printed. The final iteration will be executed without any hurdles. Hence, the
output will have all the items except the second item i.e. “BC”. It is like we are filtering out this item.

Output:
AB
CD

my_list “AB”, “BC”, “CD”

Sequence

var my_list

var

var “BC”

Value ‘BC’ skipped

PRACTICE 2

Problem Statement: Build a Python Block Code to demonstrate the CONTINUE statement using a while

loop.

Code Explanation: In the above code, we are expected to print the numbers 1 to 5, except 3. To skip
value 3, we are using an ‘if’ block along with ‘continue’. The while will work fine for the first and second

count

count

0

count 05

count count 1

count 3

Output:
1
2
4
5

85

CEDURA © Copyrighted Content. All rights reserved

Iterations, where the count will be 1 and 2. However, for the third iteration, the count value will be 3. In
this case, the ’if’ block will result in TRUE, executing the ‘continue’ block under it. Once the ‘continue’
block is executed, the current iteration will be stopped, and the control will return to the ‘while’ loop
for the next iteration. While doing so, even the ’print’ block after the ‘continue’ block will not be
executed. Hence, the value 3 will not be printed, as observed in the output. This way, we can skip any
particular event or iteration inside a control loop, using the ‘continue’ statement.

TOPIC ASSIGNMENT

1. Build a Python Code Block to print numbers from 1 to 5 using the while loop.

2. Build a Python Code Block to print EVEN numbers from 1 to 10 using the while
loop.

3. Build a Python Code Block to print numbers from 5 to 1 in reverse order using the
while loop.

4. Build a Python Code Block to print 7 table up to 5 using the while loop

5. Build a Python Code Block to print both 3 and 4 tables up to 4 using nested while
loop.

6. Build a Python Code Block to print all the EVEN numbers from the give list
[10,21,33,98,67,4] using for loop and continue statement.

7. Build a Python Code Block to print only NON-VOWELS(not a vowel) characters in
the given string ‘House’ using for loop and continue statement.

8. Build a Python Code Block to print numbers from 1 to 10 but break at 7, using the
while loop and break statement,

9. Build a Python Code Block to break the loop if any vowel is found in the given
string “Spring” using the for loop and break statement.

86

CEDURA © Copyrighted Content. All rights reserved

NOTES

87

CEDURA © Copyrighted Content. All rights reserved

SOLUTIONS - ASSIGNMENTS

Understanding Data & Data Types

1. Identify the below data types.

i. 23 Integer

ii. -26 Integer

iii. 0 Integer

iv. -12.5 Float

v. true Boolean

vi. false Boolean

vii. 3+4j Complex

viii. “Hii” String

ix. “35” String

Exploring Variables

1. Build a Python Block Code to assign a value to a variable and print it.

temp 25

temp

Input1:

temp = 25

Output:

25

Input2:

temp = 6.7

Output:

6.7

Input3:

temp = “python”

Output:

python

88

CEDURA © Copyrighted Content. All rights reserved

2. Build a Python Block Code to assign two variables with different values.

temp 25

city “hyd”

Input1:

temp = 25
city = “hyd”

Output:

25
hyd

Input2:

temp = 92.5
city = “sequel”

Output:

92.5
sequel

3. Build a Python Block Code to assign a value to a variable and then change/update the value.

temp 25

temp 32.6

Input1:

temp = 25
temp = 32.6

Output:

32.6

Input2:

temp = 25
temp = “keys”

Output:

keys

Input3:

temp = 25
temp = True

Output:

True

temp

** Assigned Boolean value

temp

city

Input3:

temp = 25
temp = True

Output:

25
True

89

CEDURA © Copyrighted Content. All rights reserved

4. Build a Python Block Code to assign a Float value to a variable and find its data type.

var 29.8

var

Input1:

var = 29.8

Output:

<class ‘float’>

Input2:

var = 1.3

Output:

<class ‘float’>

Input3:

var = 28498.33

Output:

<class ‘float’>

5. Build a Python Block Code to assign a Boolean value to a variable and find its data type.

result True

result

Input1:

result = True

Output:

<class ‘bool’>

Input2:

result = False

Output:

<class ‘bool’>

6. Build a Python Block Code to assign a String value to a variable and find its data type.

name “Sana”

name

Input1:

name = “Sana”

Output:

<class ‘str’>

Input2:

name = “Abhi”

Output:

<class ‘str’>

Input3:

name = “123”

Output:

<class ‘str’>

90

CEDURA © Copyrighted Content. All rights reserved

7. Build a Python Block Code to assign a name and a subject mark of a student and print them. Also, print its
data type.

name “Suraj”

marks 67

name

marks

Input1:

name = “Suraj”
marks = 67

Output:

Suraj
67

Input1:

name = “Pradeep”
marks = 55

Output:

Pradeep
55

Input1:

name = “Gireesh”
marks = 92

Output:

Gireesh
92

Type Casting

1. Build a Python Block Code to convert the content of the variable price = 24.5 into an integer.

price price

price

price 24.5

Input1:

price = 24.5

Output:

<class “int”>

Input2:

price = 36.05

Output:

<class “int”>

Input3:

price = 77.19

Output:

<class “int”>

91

CEDURA © Copyrighted Content. All rights reserved

2. Build a Python Block Code to convert the content of the variable height = 5 into a float.

height 5

height height

height

Input1:

height = 5

Output:

<class “float”>

Input2:

height = 32

Output:

<class “float”>

Input3:

height = 67

Output:

<class “float”>

3. Build a Python Block Code to convert the content of the variable name = “56” into an integer.

name “56”

name name

name

Input1:

name = “56”

Output:

<class “int”>

Input2:

name = “63”

Output:

<class “int”>

Input3:

name = “82”

Output:

<class “int”>

92

CEDURA © Copyrighted Content. All rights reserved

Operators

1. Build a Python Block Code to assign two values as integers to different variables
and perform below athematic operations.

a. Addition

b. Subtraction

c. Multiplication

d. Division

e. Floor Division

sum

sub

mul

div

fdiv

num1 20

num2 10
num2sum num1

num2sub num1

num2mul num1

num2div num1

num2fdiv num1

Input1:

num1 = 20
Num2 = 10

Output:

30
10
200
2
2.0

Input2:

num1 = 36
num2 = 6

Output:

36
30
108
6
6.0

Input3:

num1 = 27
num2 = 3

Output:

30
24
81
9
9.0

93

CEDURA © Copyrighted Content. All rights reserved

2. Build a Python Block Code to assign two values as integers to different variables
and perform the below comparison operations.

a. Greater than

b. Lesser than

c. Greater than or Equal to

d. Lesser than or Equal to

var2

var3

var4

num1 20

num2 10
num2num1

num2num1

num2num1

num2num1

var1

var2

var3

var4

var1

Input1:

num1 = 20
Num2 = 10

Output:

True
False
True
False

Input2:

num1 = 32
num2 = 75

Output:

False
True
False
True

Input3:

num1 = 64
num2 = 64

Output:

False
False
True
True

94

CEDURA © Copyrighted Content. All rights reserved

Print

1. Write the Syntax of the print function and explain all its parameters.

Syntax:
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Parameters:

1. sep: Represents one or more objects (values, variables, or expressions) to be printed. Multiple
objects can be separated by commas.

2. sep (Optional): Defines the string used to separate the objects. Default: A single space (' ‘).
3. end (Optional): Defines the string appended after the printed output. Default: A newline

character ('\n'), which moves the cursor to the next line.
4. file (Optional): Specifies the file or stream where the output is sent. Default: sys.stdout (console

output).
5. flush (Optional): A Boolean value (True or False) that forces the output buffer to be flushed

immediately if set to True. Default: False. Used when working with real-time streams.

2. Build a Python Block Code to assign two variables with different value.

var1 20

var2 10

var1

var2

Input1:

var1 = 20
var2 = 10

Output:

20
10

Input2:

var1 = 37
var2 = 56

Output:

37
56

Input3:

var1 = 74
var2 = 43

Output:

74
43

95

CEDURA © Copyrighted Content. All rights reserved

3. Build a Python Block Code to assign product name, price, and quantity and print
any two variables, individually.

p_name “Bot”

price 1000

p_name

quantity 10

price

Input1:

p_name = “Bot”
price =1000
quantity = 10
Output:

Bot
1000

Input2:

p_name = “RobArm”
price =15999
quantity = 10
Output:

RobArm
15999

Input3:

p_name = “Zoop”
price =2599
quantity = 1
Output:

Zoop
2599

4. Build a Python Block Code to assign product name, price, and quantity and print
any two variables using a single print function.

P_name “Zoop”

price 2599

quantity 1

productName productQuantity

Input3:

p_name = “RobArm”
price =15999
quantity = 10
Output:

RobArm, 10

Input2:

p_name = “Bot”
price =1000
quantity = 10
Output:

Bot, 10

Input1:

P_name = “Zoop”
price =2599
quantity = 1
Output:

Zoop, 1

96

CEDURA © Copyrighted Content. All rights reserved

5. Build a Python Block Code to assign salary and designation and print them
individually with a blank line in between.

salary 50000

designation “IT”

salary

designation

Input1:

salary= 50000
designation =“IT”

Output:

50000

 IT

Input2:

salary= 75000
designation =“HR”

Output:

75000

HR

Input3:

salary= 25000
designation =“Marketing”

Output:

25000

Marketing

6. Find the total age of Raju (29 years) and Rajiya (31 years) and print it.

raju_age 29

rajiya_age 31

raju_age rajiya_agetotal_age

total_age

Input1:

raju_age = 29
rajiya_age =31

Output:

60

Input2:

raju_age = 43
rajiya_age =54

Output:

97

Input3:

raju_age = 8
rajiya_age =40

Output:

48

97

CEDURA © Copyrighted Content. All rights reserved

7. What is the total bill amount if the prices of two products are Rs.5 and Rs. 6.50

product1 5

product2 6.50

Product1 Product2total_amount

total_amount

Input1:

product1 = 5
product2 = 6.50

Output:

11.50

Input2:

product1 = 83.2
product2 = 39

Output:

122.2

Input3:

product1 = 73.8
product2 = 56.7

Output:

130.5

Input

1. Build a Python Block Code to seek an Employee’s name and print it.

name Please enter name

name

Input1:

Please enter name: Suresh

Output:

Suresh

Input2:

Please enter name: Ramesh

Output:

Ramesh

Input3:

Please enter name: Mukesh

Output:

Mukesh

98

CEDURA © Copyrighted Content. All rights reserved

2. Build a Python Block Code to seek the ’first name’ and ‘last name’ of a student
and print them together.

f_name Please enter fistname

f_name

l_name Please enter lastname

l_name

Input1:

Please enter fistname :Marrapu
Please enter lastname: Kiran

Output:

Marrapu, Kiran

Input1:

Please enter fistname :Siva
Please enter lastname: Parvathi

Output:

Siva, Parvathi

Input1:

Please enter fistname :Ai
Please enter lastname: Tinkr

Output:

Ai, Tinkr

3. Build a Python Block Code to seek an Employee's name and salary using a single input function and print them.

“Enter name & salary”sal

name sal

name

Input1:

Enter name & salary: Kiran, 50000

Output:

Kiran, 50000

Input2:

Enter name & salary: Suma, 100000

Output:

Suma, 100000

Input3:

Please enter name & salary: Hyma, 75500

Output:

Hyma, 75500

99

CEDURA © Copyrighted Content. All rights reserved

4. Build a Python Block Code to seek the price (float) value of a product, convert it into an integer and print it.

price “Enter Product price”

price price

price

Input1:

Enter product price: 2000.25

Output:

2000

Input2:

Enter product price: 26.36

Output:

26

Input3:

Enter product price: 891.4

Output:

891

5. Build a Python Block Code to seek the Employee’s salary and add Rs.100 and print the final salary..

salary “Enter employee salary”

salary salary

salary

100

Input1:

Enter employee salary:13000

Output:

13100

Input2:

Enter employee salary: 22000

Output:

22100

Input3:

Enter employee salary: 22000

Output:

53600

100

CEDURA © Copyrighted Content. All rights reserved

6. Build a Python Block Code to seek Science and Social Marks from a student and print the total marks.

Science Enter science marks

Social

Science Social

sum

sum

Enter social marks

Input1:

Enter science marks: 78
Enter social marks: 84

Output:

162

Input2:

Enter science marks: 54
Enter social marks: 98

Output:

152

Input3:

Enter science marks: 87
Enter social marks: 98

Output:

185

7. Build a Python Block Code to seek the price of a product add Rs.100 as GST and print the final amount.

price Please enter product price

final_amount

100gst

price gstfinal_amount

Input1:

Please enter product price: 1000

Output:

1100

Input2:

Please enter product price: 1800

Output:

1900

Input3:

Please enter product price: 1780

Output:

1880

101

CEDURA © Copyrighted Content. All rights reserved

1. Build a Python Block Code to check whether a given number is positive or not.

CONDITIONAL Blocks

number 0

“Positive number”

“Not a Positive number”

number Please enter number

Input1:

Please enter number: 78

Output:

Positive number

Input2:

Please enter number: 0

Output:

Positive number

Input3:

Please enter number: -25

Output:

Not a Positive number

2. Build a Python Block Code to seek a number from the user and check whether a given number is even or odd.

number 2

“Even number”

“odd number”

number Please enter number

0

Input1:

Please enter number: 78

Output:

odd number

Input2:

Please enter number: 55

Output:

Even number

Input3:

Please enter number: 69

Output:

odd number

102

CEDURA © Copyrighted Content. All rights reserved

3. Build a Python Block Code to seek the Gender of the student (“Male” or ”Female”) and print 1 if the
gender is male and 0 if the gender is female.

number

1

0

gender enter gender Male or Female

“Male

Input1:

Enter gender Male or Female: “Male”

Output:

1

Input2:

Enter gender Male or Female: “Female”

Output:

0

4. Build a Python Block Code to seek two numbers from the user and display the bigger number.

num1 Enter num1

num2 Enter num2
num1

“num1 is bigger”

“num2 is bigger”

num2

Input1:

Enter num1: 56
Enter num2: 73

Output:

num2 is bigger

Input2:

Enter num1: 84
Enter num2: 29

Output:

num1 is bigger

Input3:

Enter num1: 56
Enter num2: 87

Output:

num2 is bigger

103

CEDURA © Copyrighted Content. All rights reserved

5. Build a Python Block Code to seek two numbers from the user and display the smaller number.

num1 Enter num1

num2 Enter num2
num1

“num2 is smaller”

“num1 is smaller”

num2

Input1:

Enter num1: 56
Enter num2: 73

Output:

num1 is smaller

Input2:

Enter num1: 86
Enter num2: 28

Output:

num2 is smaller

Input3:

Enter num1: 34
Enter num2: 92

Output:

num1 is smaller

6. Build a Python Block Code to seek the marks and age of a student and check the given eligibility
condition: age should be less than 25 and marks should be greater than 65. If the student meets both
conditions, print ‘Eligible’.

age Enter age

marks Enter marks

age marks

“Eligible”

25 65

Input1:

Enter age: 14
Enter marks: 73

Output:

Eligible

Input2:

Enter age: 26
Enter marks: 73

Output:

Not Eligible

Input3:

Enter age: 14
Enter marks: 54

Output:

Not Eligible

“Not Eligible”

104

CEDURA © Copyrighted Content. All rights reserved

7. Build a Python Block Code to check whether a person is eligible to drive or not. (Condition: Age of
18 and above are eligible to drive)

age Enter age

age

“Eligible to drive”

18

“You need to grow up”

Input1:

Enter age: 19

Output:

Eligible to drive

Input2:

Enter age: 17

Output:

You need to grow up

Input3:

Enter age: 35

Output:

Eligible to drive

8. Build a Python Block Code to check whether a given number is between 1 and 9

num Enter number

num num

“Number between 1 to 10”

10 0

Input1:

Enter number: 9

Output:

Number between 1 to 10

Input2:

Enter number: 2

Output:

Number between 1 to 10

Input3:

Enter number: 29

Output:

Number not between 1 to 10

“Number not between 1 to 10”

105

CEDURA © Copyrighted Content. All rights reserved

9. Build a Python Block Code to seek a password from the user and authenticate it. (Tip: You decide
on the password and check it against the user input)

pswd

pswd “1234”

“Correct Password”

Enter Password

user_pswd “1234”
”

Input1:

Enter password: “1234”

Output:

Correct Password

Input2:

Enter password: “124”

Output:

Wrong Password

Input3:

Enter password: “123”

Output:

Wrong Password

“Wrong Password”

10. Build a Python Block Code to check the age and display ”Child”, “Teenager” or “Youth”. (Tip: age
1 to 12 - Child; 13 to 19 - Teenager; 20 and above - Youth)

age

age 1

“Child”

“Teenager”

Please enter your age

12age

age 13 19age

“Youth”

Input1:

Please enter your age: 9

Output:

Child

Input2:

Please enter your age: 15

Output:

Teenager

Input3:

Please enter your age: 23

Output:

Youth

106

CEDURA © Copyrighted Content. All rights reserved

1. Build a Python Block Code (using Match-Case) to seek input from a user (0 or 1) and print the text
(‘Zero’ or ‘One’) form the input number. In case a user enter any other number, then print ‘invalid
input’

choice Enter a number

choice

0

“Zero”

1

“One”

_

“Invalid Input”

Match Case

Input1:

Enter a number: 9

Output:

Invalid Input

Input2:

Enter a number: 0

Output:

Zero

Input3:

Enter a number: 1

Output:

One

2. Build a Python Block Code (using Match-Case) to take input from the user (0 or 1) and perform the
addition of two variables if the input is 0 and subtraction if the input is 1.

choice Enter 0 for addition
or 1 for substractionchoice

0

sum

1

sub

_

“Invalid Input”

num1 Enter a number

num2 Enter a number

num2sum num1

num2sub num1

107

CEDURA © Copyrighted Content. All rights reserved

Input1:

Enter a number: 9
Enter a number:10
Enter 0 for addition or 1 for substraction:0

Output:

19

Input1:

Enter a number: 25
Enter a number:10
Enter 0 for addition or 1 for subtraction: 1

Output:

15

3. Build a Python Block Code (using Match-Case) to take input from the user (Big or Small) and
compare two variables, var1 (6) and var2 (5). If the input is Big, check whether variable var1 is bigger
than var2. If the input is small, check whether variable var1 is smaller than var2.

choice

choice

“Big”

var1

“Small”

_

“Invalid Input”

var1 Enter number”)

var2 Enter number”)

var1 var2

var2

var1

var1 var2

var2

Enter Big or Small
for comparison

Input1:

Enter number: 6
Enter number: 5
Enter Big or Small for comparison: Big

Output:

6

Input1:

Enter number: 14
Enter number: 25
Enter Big or Small for comparison: Small

Output:

14

108

CEDURA © Copyrighted Content. All rights reserved

1. Build a Python Block Code to create a LIST of student marks and print them.

Sequences

stu_marks

stu_marks

25,35,45,65

Input1:

stu_marks = [25,35,45,65]

Output:

[25,35,45,65]

Input2:

stu_marks = [53,73,45,96]

Output:

[53,73,45,96]

Input3:

stu_marks = [29,76,85,77]

Output:

[29,76,85,77]

list

list

25,35,45,60

2. Build a Python Block Code to create a LIST and print its data type.

Input3:

list = [25,35,45,65]

Output:

<class ‘list’>

Input1:

list = [53,73,45,96]

Output:

<class ‘list’>

Input2:

list = [29,76,85,77]

Output:

<class ‘list’>

3. Build a Python Block Code to create a TUPLE of student ages and print them.

stu_age

stu_age

12,15,17,18

Input1:

stu_age = (12,15,17,18)

Output:

(12,15,17,18)

Input2:

stu_age = (11,9,13,8)

Output:

(11,9,13,8)

Input3:

stu_age = (10,19,14,15)

Output:

(10,19,14,15)

109

CEDURA © Copyrighted Content. All rights reserved

4. Build a Python Block Code to create a SET of Employee Details and print them.

emp_details

emp_details

“Ram”,25, 25000

Input1:

emp_details ={“Ram”, 25, 25000}

Output:

{“Ram”, 25, 25000}

Input2:

emp_details = {“Siva”, 24, 13000}

Output:

{“Siva”, 24, 13000}

Input3:

emp_details ={“Priya”, 28, 29000}

Output:

{“Priya”, 28, 29000}

5. Build a Python Block Code to create a SET with duplicate items in it. What will be the output when
you print it?

var

var

1, 1, 2, 3, 4, 1

Input1:

var = {1, 1, 2, 3, 4, 1}

Output:

{1,2,3,4}

Input2:

var = {4,1, 2, 3, 4, 5, 1}

Output:

{1,2,3,4,5}

Input3:

var = {1, 5, 2, 1, 4, 1}

Output:

{1,2,4, 5}

110

CEDURA © Copyrighted Content. All rights reserved

8. Build a Python Block Code to create a DICTIONARY of Employee Details and print any one value.

my_dict

my_dict[“sal”]

“sal” 25000 age 27

6. Build a Python Block Code to create a DICTIONARY of Employee Details and print it.

emp

emp

“name” “Rejesh” sal 25000

Input1:

emp ={“name”: ”Ramesh”, “sal”:25000}

Output:

{“name”: ”Ramesh”, “sal”:25000}

Input2:

emp ={“name”: ”Rajesh”, “sal”:35000}

Output:

{“name”: ”Rajesh”, “sal”:35000}

7. Build a Python Block Code to create a DICTIONARY using keys (Name, age) and values (Akram, 10).

emp

emp

“name” “Akram” age 10

Input1:

emp = {“name”: ”Akram”, “age”:10}

Output:

{“name”: ”Akram”, “age”:10}

Input2:

emp = {“name”: ”Vikram”, “age”:26}

Output:

{“name”: ”Vikram”, “age”:26}

Input1:

my_dict = {“sal”: 25000, “age”:27}

Output:

25000

Input2:

my_dict = {“sal”: 37800, “age”:20}

Output:

37800

111

CEDURA © Copyrighted Content. All rights reserved

10. Write a Python Block code to create a list based on the given values and print the 3rd Item in the
list. (Hint: Consider 10, 20.3, True, "Hello”, -56, 22.5 as values)

nlst

nlst

25,35,[45,60],20

9. Build a Python Block Code to create a NESTED list.

lst_new[3]

10,20.3,True,”Hello”,-56,22.5

Input1:

nlst = [25,35,[45,60],20]
Output:

[25,35,[45,60],20]

Input2:

nlst = [45,55,[22,40],25]
Output:

[45,55,[22,40],25]

Input3:

nlst = [25, [45,60],35, 20]
Output:

[25, [45,60],35, 20]

Input1:

lst_new = [10,20.3,True,”Hello”,-56,22.5]

Output:

Hello

Input2:

lst_new = [10,”Hello”,-56,22.5 20.3,True]

Output:

22.5

11. Write a Python Block code to create a list using the values 22, 45, 66, 77, 22, "78.67", and 22. After
creating find out whether a value 77 is in the list or not.

my_lst 22,45,66,77,22,67,22

my_lst77

lst_new

Input1:

my_lst = [22,45,66,77,22,67,22]

Output:

True

Input2:

my_lst = [22,45,66,77,22,67,22]

Output:

False

Input3:

my_lst = [22,45,66,77,22,67,22]

Output:

True

Note:
Searching value: 77

Note:
Searching value: 75

Note:
Searching value: 22

112

CEDURA © Copyrighted Content. All rights reserved

12. Write a Python Block code to assign a string “Sequence” to a variable and print the 4th
character and the characters “uen”, individually.

my_str

my_str[3]

“Sequence”

my_str 3 6

Input1:

my_str = “Sequence”

Output:

u
uen

Input2:

my_str = “Slicing”

Output:

c
cin

Input3:

my_str = “Variable”

Output:

i
iab

Range

1. Build a Python Block Code to print a list of numbers [1,2,3,4,5], using the Range function.

mylst

mylst

1 6 1

Input1:

mylst = list(range(1,6,1))

Output:

[1, 2, 3, 4, 5]

Input2:

mylst = list(range(1,5,2))

Output:

[1, 3]

Input3:

mylst = list(range(-4,-8,-1))

Output:

[-4, -5, -6, -7]

113

CEDURA © Copyrighted Content. All rights reserved

mytuple

mytuple

7 11 1

2. Build a Python Block Code to print a tuple of numbers (7,8,9,10), using the Range function.

Input1:

mytuple= tuple(range(7, 11, 1))

Output:

(7,8,9,10)

Input2:

mytuple= tuple(range(4, 10, 2))

Output:

(4, 6, 8)

Input3:

mytuple= tuple(range(-3, -7, -1))

Output:

(-3, -4, -5, -6)

3. Build a Python Block Code to print even numbers from 51 to 60, using the Range function.

even_list

even_list

50 60 2

Input1:

even_list= list(range(50, 60, 2))

Output:

[50,52, 54, 56, 58]

Input2:

even_list = list(range(50, 40, -2))

Output:

[50, 48, 46, 44, 42]

Input3:

even_list = list(range(8, 16, 2))

Output:

[8, 10, 12, 14]

4. Build a Python Block Code to print three values only between 1 to 10, using the Range function.
(Hint: Should print 1, 4, 7).

lst

lst

1 10 3

Input1:

lst= list(range(1, 10, 3))

Output:

[1, 4, 7]

Input2:

lst= list(range(2, 10, 3))

Output:

[2, 5, 8]

Input3:

lst= list(range(30, 21, -3))

Output:

[30, 27, 24]

114

CEDURA © Copyrighted Content. All rights reserved

For Loops

1. Build a Python Block Code to create a list of numbers and print them individually using the for
loop.

my_list 1,23,55,78,97

var my_list

var

Input1:

my_list= [1,23, 55, 78, 97]

Output:

1
23
55
78
97

Input2:

my_list= [27, 59, 45, 89, 31]

Output:

27
59
45
89
31

Input3:

my_list= [51,75, 65, 87, 67]

Output:

51
75
65
87
67

2. Build a Python Block Code to demonstrate iteration over the string “Hello” using the for loop.

char my_str

char

Input1:

my_str = “Hello”

Output:

H
e
l
l
o

my_str “Hello”

Input2:

my_str = “Welcome”

Output:

W
e
l
c
o
m
e

Input3:

my_str = “String”

Output:

S
t
r
i
n
g

115

CEDURA © Copyrighted Content. All rights reserved

3. Build a Python Block Code to demonstrate iteration through the given sequence (45, ‘Py”, -5).

my_list 45, “Py”,-5

var my_list

var

Input1:

my_list= [45, “Py”,-5]

Output:

45
Py
-5

Input2:

my_list= [“Code”, 59, 6, “12”]

Output:

Code
59
6
12

Input3:

my_list= [22.5, -9, “Hii”]

Output:

22.5
-9
Hii

4. Build a Python Block Code to print 1 to 5 numbers using the Range function and For loop.

var

var

1 6 1

Input1:

start=1 , stop= 6, step= 1

Output:

1
2
3
4
5

Input1:

start=2 , stop= 9, step= 2

Output:

2
4
6
8

Input1:

start=10 , stop= 1, step= -2

Output:

10
8
6
4
2

116

CEDURA © Copyrighted Content. All rights reserved

5. Buil da Python Block Code to print 3 tables up to 5 using the for loop.

var

var

1 4 1
var1 1 6 1

var1

Input1:

start=1 , stop= 4, step= 1
start= 1, stop=6, step=1

Output:

1 2 3
2 4 6
3 6 9
4 8 12
5 10 15

Input2:

start=2 , stop= 5, step= 1
start= 5, stop=0, step=-1

Output:

10 15 20
8 12 16
6 9 12
4 6 8
2 3 4

Input3:

start=4 , stop= 7, step= 1
start= 1, stop=6, step=1

Output:

4 5 6
8 10 12
12 15 18
16 20 24
20 25 30

While L oops

1. Build a Python Code Block to print numbers from 1 to 5 using the while loop.

count

count

1

count 06

count count 1

Input1:

count = 1
count < 6

Output:
1
2
3
4
5

Input2 (Additional - Try it)

count = 0
count < 5

Output:
0
1
2
3
4

* Generates 5 numbers
 starting with 0

117

CEDURA © Copyrighted Content. All rights reserved

2. Build a Python Code Block to print EVEN numbers from 1 to 10 using the while loop.

Input1:

num = 1
num <= 10

Output:
2
4
6
8
10

Input2 (Additional - Try it)

num = 51
num <= 60

Output:
52
54
56
58
60

num 1

num

num num 1

010

num 2 0

num

* Generating EVEN numbers
 from 51 to 60

3. Build a Python Code Block to print numbers from 5 to 1 in reverse order using the while loop.

.

count

count

5
count 00

count count 1

Input1:

count = 5
count > 0

Output:
5
4
3
2
4
1

Input2 (Additional - Try it)
Printing 6 numbers in reverse order
starting at 26

count = 26
count > 20

Output:
26
25
24
23
22
21

1

118

CEDURA © Copyrighted Content. All rights reserved

4. Build a Python Code Block to print 7 table up to 5 using the while loop.

table 7

mul

mul mul 1

05

table

mul 1

mul

Input1:

table = 7
mul = 1
mul <= 5

Output:
7
14
21
28
35

Input2 (Additional - Try it)
Printing 6 table from 5 to 10.

table = 6
mul = 5
mul <= 10

Output:
30
36
42
48
54
60

5. Build a Python Code Block to print both 3 and 4 tables up to 4 using nested while loop.

table 3

table

mul mul 1

04

table

mul 1

mul

mul 05

table table 1

119

CEDURA © Copyrighted Content. All rights reserved

Input1:

table = 3
mul = 1
table <= 4
mul <= 5

Output:
3
6
9
12
15

4
8
12
16
20

Input2 (Additional - Try it)
Printing 6 & 7 tables from 5 to 10.

table = 6
mul = 5
table <= 4
mul <= 10

Output:
30
36
42
48
60

35
42
49
56
63
70

6. Build a Python Code Block to print all the EVEN numbers from the give list [10,21,33,98,67,4] using
for loop and continue statement.

my_list 10,21,33,98,67, 4

var my_list

var

var 2 1

Input1:

my_list = [10,21,33,98,67, 4]
if var % 2 == 1:

Output:
10
98
4

Input2 (Additional - Try it)
Print the ODD numbers from the list

my_list = [10,21,33,98,67, 4]
if var % 2 == 0:

Output:
21
33
67

• Logic is to find the even numbers. When an even number is found, the
continue statement will be executed and the iteration skipped.

120

CEDURA © Copyrighted Content. All rights reserved

7. Build a Python Code Block to print NON-VOWELS (not a vowel) characters in the given string
‘House’ using the for loop and continue statement.

my_str “house”

var my_str

lst “a”,”e”,”i”,”o”,”u”

var lst

var

Input1:

list = [“a”,”e”,”i”,”o”,”u”]
my_str = “house”
if var in lst :

Output:
h
u
s

Input2 (Additional - Try it)
Code to print the vowels

list = [“a”,”e”,”i”,”o”,”u”]
my_str = “house”
if var not in lst :

Output:
o
u
e

8. Build a Python Code Block to print numbers from 1 to 10 but break at 7, using the while loop and
break statement,

count

count

1

count 010

count count 1

count 7

121

CEDURA © Copyrighted Content. All rights reserved

Input1:

count = 1
count < 10
if count == 7:

Output:
1
2
3
4
5
6

Input2 (Additional - Try it)
Code to break at 5

count = 1
count < 10
if count == 7:

Output:
1
2
3
4

9. Build a Python Code Block to break the loop if any vowel is found in the given string “Spring”
using the for loop and break statement.

my_str “spring”

var my_str

lst “a”,”e”,”i”,”o”,”u”

var lst

var

Input1:

lst = [“a”,”e”,”i”,”o”,”u”}
my_str - “spring”

Output:

s
p

Input2:

lst = [“a”,”e”,”i”,”o”,”u”}
my_str - “python”

Output:

P
y
t
h

Input3:

lst = [“a”,”e”,”i”,”o”,”u”}
my_str - “education”

Output:

Note: No output as the starting
character is a Vowel. Hence, the
loop breaks in the first iteration.

122

CEDURA © Copyrighted Content. All rights reserved

NOTES

123

PYTHON
Block Coding

hello@schoolforai.com
+91 99492 96431

Copyright CEDURA

124

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

